
PMIx: Storage Integration

Agenda

• Brief overview of PMIx
§ What is PMIx?
§ Status

• Level set
§ Target vision of tiered storage
§ Role of workload manager

• PMIx-Storage integration
§ Related existing APIs
§ Possible extenstions

The Community

https://pmix.github.io/master
https://github.com/pmix

What Is PMIx?

• Standardized APIs
§ Four header files (client, server, common, tool)
§ Enable portability across environments
§ Support interactions between applications and system

management stack
• Convenience library

§ Facilitate adoption
§ Serves as validation platform for standard
§ Plugin architecture to support proprietary plugins

• Community

Motivation

• Exascale launch times are a hot topic
§ Desire: reduce from many minutes to few

seconds
§ Target: O(106) MPI processes on O(105)

nodes thru MPI_Init in < 30 seconds
• New programming models are emerging

§ Driven by need to efficiently exploit scale vs.
resource constraints

§ Characterized by increased app-RM
integration

A Deal Is Struck

Launch
Scaling

New
Models

RMPMIx

Instant On ó Scope

Easier to add another callback than to
support an additional library/community

FS

Fabric

RAS

APP

Orchestration
Requests

Responses

A Deal Is Struck

Launch
Scaling

New
Models

RMPMIx

Instant On ó Scope

FS

Fabric

RAS

APP

APIs

Command
line tools

app SMS job script
integration

A Deal Is Struck

Launch
Scaling

New
Models

RMPMIx

Instant On ó Scope

FS

Fabric

RAS

APP

SMS Abstraction

Minimize
Connectivity

On-Node

Messenger not Doer

• Standardized APIs
§ Four header files (client, server, common, tool)
§ Enable portability across environments
§ Support interactions between applications and

system management stack
• Convenience library

§ Facilitate adoption
§ Serves as validation platform for standard

• Community

APPSMS

Tool

PMIx “Standards” Process

• Modifications/additions
§ Proposed as RFC
§ Include prototype implementation

• Pull request to convenience library

§ Notification sent to mailing list
• Reviews conducted

§ RFC and implementation
§ Continues until consensus emerges

• Approval given
§ Developer telecon (2x/week)

Philosophy

• Generalized APIs
§ Few hard parameters
§ “Info” arrays to pass information, specify directives

• Easily extended
§ Add “keys” instead of modifying API

• Async operations
• Thread safe
• SMS always has right to say “not supported”

§ Allow each backend to evaluate what and when to
support something

RM Adoption

• Already released
§ SLURM 16.05 (PMIx v1.1.5)
§ IBM-CORAL

• Planned (2017)
§ IBM-LSF, Fujitsu, Adaptive Solutions, Altair, Microsoft

• Reference server
§ Provides surrogate support until native support

becomes available
§ Supports full PMIx standard, limited by RM capabilities

Current Support

• Typical startup operations
§ Put, get, commit, barrier, spawn, [dis]connect, publish/lookup

• Tool connections
§ Debugger, job submission, query

• Generalized query support
§ Job status, layout, system data, resource availability

• Event notification
§ App, system generated
§ Subscribe, chained
§ Pre-emption, failures, timeout warning, …

• Logging
§ Status reports, error output

In Pipeline

• Network support
§ Security keys, pre-spawn local driver setup, fabric

topology and status, traffic reports
• Obsolescence protection

§ Automatic cross-version communication compatibility
• Flexible allocations

§ Release resources, request resources
• Job control

§ Pause, kill, signal, heartbeat, resilience support
• Generalized data store

Launch Scaling

• Eliminate initialization collectives
§ Stage I

• RM has info – provide it at startup
• Fetch info at first message

§ Stage II
• Compute endpoints from RM info

§ Stage III
• Correctly recover from unexpected messages prior to local

process start
• Use fabric for launch message

• Executable/library pre-staging
§ File system cache to switch-local NVRAM

Where we came in…

Complete
or

Scheduled

Baseline Vision

• Tiered storage
§ Parallel file system
§ Caches at IO server, switches, cabinets, …
§ Caches hold images, files, executables,

libraries, checkpoints
• Bits flow in all directions

§ Stage locations prior to launch
§ Movement in response to faults, dynamic

workflow, computational stages

Monitoring
Console

DB

File
SystemNetwork

Resource
Manager

Prov.
Agent

RM APP

RM Orchestrator

Planned Support

System
PMIx server

WLM

Job
Script

User-specified caching,
dependencies
(data & libs),
persistence

Query

Retrieval time

Parse for dependencies

Current data map
Usage patterns
Authorization

Planned Support

System
PMIx server

WLM

Job
Script

Pre-stage
(images, binaries, libs)
Allocation schedule

Allocate
Launch app

Compute

Planned Support

System
PMIx server

WLM

Job
Script

Compute

Local PMIx
Server

Orchestration requests

File System Integration Plans

• Tool support
§ Communicate initial requests
§ Job script/app coordination

• Dependency detection
• Abstraction to local subsystem libraries
• Extend existing functions

§ Query
§ Job control
§ Allocate

• New APIs?

Summary

We now have an interface library RMs will
support for application-directed requests

Offer: collaboratively define
what we want to do with it

New APIs? New keys?

