
PMIx: Storage Integration



Agenda

• Brief overview of PMIx
§ What is PMIx?
§ Status

• Level set
§ Target vision of tiered storage
§ Role of workload manager

• PMIx-Storage integration
§ Related existing APIs
§ Possible extenstions



The Community

https://pmix.github.io/master
https://github.com/pmix



What Is PMIx?

• Standardized APIs
§ Four header files (client, server, common, tool)
§ Enable portability across environments
§ Support interactions between applications and system 

management stack
• Convenience library

§ Facilitate adoption
§ Serves as validation platform for standard
§ Plugin architecture to support proprietary plugins

• Community



Motivation

• Exascale launch times are a hot topic
§ Desire: reduce from many minutes to few 

seconds
§ Target: O(106) MPI processes on O(105) 

nodes thru MPI_Init in < 30 seconds
• New programming models are emerging

§ Driven by need to efficiently exploit scale vs. 
resource constraints

§ Characterized by increased app-RM 
integration
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Messenger not Doer

• Standardized APIs
§ Four header files (client, server, common, tool)
§ Enable portability across environments
§ Support interactions between applications and 

system management stack
• Convenience library

§ Facilitate adoption
§ Serves as validation platform for standard

• Community
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PMIx “Standards” Process

• Modifications/additions
§ Proposed as RFC
§ Include prototype implementation

• Pull request to convenience library

§ Notification sent to mailing list
• Reviews conducted

§ RFC and implementation
§ Continues until consensus emerges

• Approval given
§ Developer telecon (2x/week)



Philosophy

• Generalized APIs
§ Few hard parameters
§ “Info” arrays to pass information, specify directives

• Easily extended
§ Add “keys” instead of modifying API

• Async operations
• Thread safe
• SMS always has right to say “not supported”

§ Allow each backend to evaluate what and when to 
support something



RM Adoption

• Already released
§ SLURM 16.05 (PMIx v1.1.5)
§ IBM-CORAL

• Planned (2017)
§ IBM-LSF, Fujitsu, Adaptive Solutions, Altair, Microsoft

• Reference server
§ Provides surrogate support until native support 

becomes available
§ Supports full PMIx standard, limited by RM capabilities



Current Support

• Typical startup operations
§ Put, get, commit, barrier, spawn, [dis]connect, publish/lookup

• Tool connections
§ Debugger, job submission, query

• Generalized query support
§ Job status, layout, system data, resource availability

• Event notification
§ App, system generated
§ Subscribe, chained
§ Pre-emption, failures, timeout warning, …

• Logging
§ Status reports, error output



In Pipeline

• Network support
§ Security keys, pre-spawn local driver setup, fabric 

topology and status, traffic reports
• Obsolescence protection

§ Automatic cross-version communication compatibility
• Flexible allocations

§ Release resources, request resources
• Job control

§ Pause, kill, signal, heartbeat, resilience support
• Generalized data store



Launch Scaling

• Eliminate initialization collectives
§ Stage I

• RM has info – provide it at startup
• Fetch info at first message

§ Stage II
• Compute endpoints from RM info

§ Stage III
• Correctly recover from unexpected messages prior to local 

process start
• Use fabric for launch message

• Executable/library pre-staging
§ File system cache to switch-local NVRAM

Where we came in…

Complete 
or 

Scheduled



Baseline Vision

• Tiered storage
§ Parallel file system
§ Caches at IO server, switches, cabinets, …
§ Caches hold images, files, executables, 

libraries, checkpoints
• Bits flow in all directions

§ Stage locations prior to launch
§ Movement in response to faults, dynamic 

workflow, computational stages
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File System Integration Plans

• Tool support
§ Communicate initial requests
§ Job script/app coordination 

• Dependency detection
• Abstraction to local subsystem libraries
• Extend existing functions

§ Query
§ Job control
§ Allocate

• New APIs?



Summary

We now have an interface library RMs will 
support for application-directed requests

Offer: collaboratively define 
what we want to do with it

New APIs? New keys?


