PMIx: Storage Integration

Brief overview of PMIx
= \What is PMIx?
= Status

Level set
= Target vision of tiered storage
= Role of workload manager

PMIx-Storage integration
* Related existing APls

. , —
= Possible extenstions

PMIx 10

g8y

The Community

<|||

Mellanox

TECHNOLOGIES

%
amSchedMD Adaptive
L:b FUﬁTSU @sAlamos
rRisTr T
https://pmix.github.io/master =]

https://github.com/pmix TLPUMh 1

What Is PMIx?

Standardized APIs

= Four header files (client, server, common, tool)
= Enable portability across environments

= Support interactions between applications and system
management stack

Convenience library
= Facilitate adoption
= Serves as validation platform for standard
= Plugin architecture to support proprietary plugins

Community —
PMIcio

Motivation

Exascale launch times are a hot topic

= Desire: reduce from many minutes to few
seconds

= Target: O(10°) MPI processes on O(10°)
nodes thru MPI_Init in < 30 seconds
New programming models are emerging

= Driven by need to efficiently exploit scale vs.
resource constraints

= Characterized by increased app-RM ___
integration @}Mhmw

A Deal Is Struck

Instant On < Scope

Launch
Scaling

RAS

Easier to add another callback than to
support an additional library/community L}Mlxlo18

A Deal Is Struck

Instant On < Scope

~
"

Launch
Scaling

APLs

PMIx B S

Commannd,

L:&vw/tool/y RAS
ppeSMS & job script —
integration
=l
PMIx 10
14587

A Deal Is Struck

Instant On < Scope

Launch
Scaling

SMS Abstractiovw

RAS

“On-Node

“E=T1]

PMIx 10

ffes

Messenger not Doer

Standardized APlIs
ourhe A

onvenie
Facilitat _
Serves as validation platform fc

Community

PMIx “Standards” Process

Modifications/additions
= Proposed as RFC

= |nclude prototype implementation
Pull request to convenience library

= Notification sent to mailing list

Reviews conducted
= RFC and implementation
= Continues until consensus emerges

Approval given
= Developer telecon (2x/week)

==l
PMIx 10
piss s

Philosophy

Generalized APlIs
= Few hard parameters
= “Info” arrays to pass information, specify directives

Easily extended
= Add “keys” instead of modifying API

Async operations
Thread safe

SMS always has right to say “not supported”
= Allow each backend to evaluate what and when to

support something Ewuxlols

RM Adoption

Already released
= SLURM 16.05 (PMIx v1.1.5)
= IBM-CORAL
Planned (2017)
= |IBM-LSF, Fujitsu, Adaptive Solutions, Altair, Microsoft

Reference server

= Provides surrogate support until native support
becomes available

= Supports full PMIx standard, limited by RM capabilities

==l
PMIx 10
piss s

Current Support

Typical startup operations
= Put, get, commit, barrier, spawn, [dis]connect, publish/lookup

Tool connections
= Debugger, job submission, query

Generalized query support
= Job status, layout, system data, resource availability

Event notification

= App, system generated

= Subscribe, chained

= Pre-emption, failures, timeout warning, ...

Logging

E=vp!
= Status reports, error output

PMIx 10

i 35

In Pipeline

Network support

= Security keys, pre-spawn local driver setup, fabric
topology and status, traffic reports

Obsolescence protection
= Automatic cross-version communication compatibility

Flexible allocations
= Release resources, request resources

Job control
= Pause, Kill, signal, heartbeat, resilience support

Generalized data store EMlxmw

Launch Scaling

Eliminate initialization collectives

= Stage |
RM has info — provide it at startup Complete
Fetch info at first message SW
= Stage |l
Compute endpoints from RM info
= Stage |l

Correctly recover from unexpected messages prior to local
process start

Use fabric for launch message Where we came in...

Executable/library pre-staging —
= File system cache to switch-local NVRAM L}Wﬂxlo18

Baseline Vision

Tiered storage
= Parallel file system
= Caches at |O server, switches, cabinets, ...

= Caches hold images, files, executables,
libraries, checkpoints

Bits flow in all directions
= Stage locations prior to launch

= Movement in response to faults, dynamic
workflow, computational stages —
@Mlxmw

RM == QOrchestrator

vonsole

il

U
2
C =)
(U C —

{]
(@«

Planned Support
Parse for dependencie/\
Current data map

System WLM<+— Usage patterns
PMIx server Authorization

Query

User-specified caching,
dependencies

(data & libs),
persistence

Retrieval time

“E=T1]

PMIx 10

{ 85

Planned Support

System
PMIx server

Pre-stage
(images, binaries, libs)
WLM Allocation schedule

i

Allocate
Launch app

TES 1]
PMIx10%
1éss s

Planned Support

System WLM
PMiIx server

Orches’rra’rlon requests
1]

PMIx 10

ffes

Local PMIx
Server

File System Integration Plans

Tool support
= Communicate initial requests
= Job script/app coordination

Dependency detection
Abstraction to local subsystem libraries
Extend existing functions

= Query
= Job control
= Allocate
=y
New APIs? TLPUMIXJ'OB

We now have an interface library RMs will
support for application-directed requests

Offer: collaboratively define
what we want to do with it
New APIs? New keys?

Thank You! .

PMIx 10

