
Process Management Interface
for Exascale (PMIx) Standard

Version 2.0
September 2018

This document describes the Process Management Interface for Exascale (PMIx) Standard, version
2.0.

Comments: Please provide comments on the PMIx Standard by filing issues on the document
repository https://github.com/pmix/pmix-standard/issues or by sending them to the PMIx
Community mailing list at https://groups.google.com/forum/#!forum/pmix. Comments should
include the version of the PMIx standard you are commenting about, and the page, section, and line
numbers that you are referencing. Please note that messages sent to the mailing list from an
unsubscribed e-mail address will be ignored.

Copyright c© 2018 PMIx Standard Review Board.
Permission to copy without fee all or part of this material is granted, provided the PMIx Standard
Review Board copyright notice and the title of this document appear, and notice is given that
copying is by permission of PMIx Standard Review Board.

https://github.com/pmix/pmix-standard/issues
https://groups.google.com/forum/#!forum/pmix

This page intentionally left blank

Contents

1. Introduction 1
1.1. Charter . 2
1.2. PMIx Standard Overview . 2

1.2.1. Who should use the standard? . 3
1.2.2. What is defined in the standard? . 3
1.2.3. What is not defined in the standard? . 3
1.2.4. General Guidance for PMIx Users and Implementors 4

1.3. PMIx Architecture Overview . 5
1.3.1. The PMIx Reference Implementation (PRI) 6
1.3.2. The PMIx Reference RunTime Environment (PRRTE) 7

1.4. Organization of this document . 7
1.5. Version 1.0: June 12, 2015 . 8
1.6. Version 2.0: Sept. 2018 . 9

2. PMIx Terms and Conventions 10
2.1. Notational Conventions . 11
2.2. Semantics . 12
2.3. Naming Conventions . 13
2.4. Procedure Conventions . 13
2.5. Standard vs Reference Implementation . 13

3. Data Structures and Types 15
3.1. Constants . 15

3.1.1. Error Constants . 16
3.2. Data Types . 19

3.2.1. Key Structure . 19
3.2.2. Namespace Structure . 20
3.2.3. Rank Structure . 21
3.2.4. Process Structure . 21

i

3.2.5. Process structure support macros . 21
3.2.6. Process State Structure . 23
3.2.7. Process Information Structure . 24
3.2.8. Process Information Structure support macros 25
3.2.9. Scope of Put Data . 26
3.2.10. Range of Published Data . 27
3.2.11. Data Persistence Structure . 27
3.2.12. Value Structure . 28
3.2.13. Value structure support macros . 29
3.2.14. Load a pmix_value_t structure . 30
3.2.15. Info and Info Array Structures . 31
3.2.16. Info structure support macros . 32
3.2.17. Info Type Directives . 35
3.2.18. Info Directive support macros . 35
3.2.19. Job Allocation Directives . 36
3.2.20. Lookup Returned Data Structure . 37
3.2.21. Lookup data structure support macros 37
3.2.22. Application Structure . 40
3.2.23. App structure support macros . 40
3.2.24. Query Structure . 42
3.2.25. Query structure support macros . 42
3.2.26. Modex Structure . 43
3.2.27. Modex data structure support macros 44

3.3. Data Packing/Unpacking Types and Structures 45
3.3.1. Byte Object Type . 45
3.3.2. Byte object support macros . 45
3.3.3. Data Buffer Type . 47
3.3.4. Data buffer support macros . 47
3.3.5. Data Array Structure . 49
3.3.6. Generalized Data Types Used for Packing/Unpacking 49

3.4. Reserved attributes . 51
3.4.1. Initialization attributes . 51
3.4.2. Tool-related attributes . 52

ii PMIx Standard – Version 2.0 – September 2018

3.4.3. Identification attributes . 52
3.4.4. UNIX socket rendezvous socket attributes 53
3.4.5. TCP connection attributes . 53
3.4.6. Global Data Storage (GDS) attributes 54
3.4.7. General process-level attributes . 54
3.4.8. Scratch directory attributes . 54
3.4.9. Relative Rank Descriptive Attributes 55
3.4.10. Size information attributes . 56
3.4.11. Memory information attributes . 56
3.4.12. Topology information attributes . 57
3.4.13. Request-related attributes . 57
3.4.14. Server-to-PMIx library attributes . 58
3.4.15. Srever-to-Client attributes . 59
3.4.16. Event handler registration and notification attributes 59
3.4.17. Fault tolerance attributes . 61
3.4.18. Spawn attributes . 61
3.4.19. Query attributes . 63
3.4.20. Log attributes . 64
3.4.21. Debugger attributes . 64
3.4.22. Resource manager attributes . 65
3.4.23. Environment variable attributes . 65
3.4.24. Job Allocation attributes . 65
3.4.25. Job control attributes . 66
3.4.26. Monitoring attributes . 67

3.5. Callback Functions . 67
3.5.1. Release Callback Function . 68
3.5.2. Modex Callback Function . 68
3.5.3. Spawn Callback Function . 69
3.5.4. Op Callback Function . 70
3.5.5. Lookup Callback Function . 70
3.5.6. Value Callback Function . 71
3.5.7. Info Callback Function . 71
3.5.8. Event Handler Registration Callback Function 72

Contents iii

3.5.9. Notification Handler Completion Callback Function 73
3.5.10. Notification Function . 74
3.5.11. Server Setup Application Callback Function 76
3.5.12. Server Direct Modex Response Callback Function 77
3.5.13. pmix_connection_cbfunc_t . 78
3.5.14. pmix_tool_connection_cbfunc_t 79
3.5.15. Constant String Functions . 79

4. Initialization and Finalization 82
4.1. Query . 82

4.1.1. PMIx_Initialized . 82
4.1.2. PMIx_Get_version . 83

4.2. Client Initialization and Finalization . 83
4.2.1. PMIx_Init . 83
4.2.2. PMIx_Finalize . 86

4.3. Tool Initialization and Finalization . 87
4.3.1. PMIx_tool_init . 87
4.3.2. PMIx_tool_finalize . 90

4.4. Server Initialization and Finalization . 91
4.4.1. PMIx_server_init . 91
4.4.2. PMIx_server_finalize . 93

5. Key/Value Management 95
5.1. Setting and Accessing Key/Value Pairs . 95

5.1.1. PMIx_Put . 95
5.1.2. PMIx_Get . 96
5.1.3. PMIx_Get_nb . 98
5.1.4. PMIx_Store_internal . 100

5.2. Exchanging Key/Value Pairs . 101
5.2.1. PMIx_Commit . 101
5.2.2. PMIx_Fence . 102
5.2.3. PMIx_Fence_nb . 103

5.3. Publish and Lookup Data . 105
5.3.1. PMIx_Publish . 105

iv PMIx Standard – Version 2.0 – September 2018

5.3.2. PMIx_Publish_nb . 107
5.3.3. PMIx_Lookup . 109
5.3.4. PMIx_Lookup_nb . 111
5.3.5. PMIx_Unpublish . 113
5.3.6. PMIx_Unpublish_nb . 114

6. Process Management 117
6.1. Abort . 117

6.1.1. PMIx_Abort . 117
6.2. Process Creation . 118

6.2.1. PMIx_Spawn . 118
6.2.2. PMIx_Spawn_nb . 122

6.3. Connecting and Disconnecting Processes . 126
6.3.1. PMIx_Connect . 127
6.3.2. PMIx_Connect_nb . 129
6.3.3. PMIx_Disconnect . 130
6.3.4. PMIx_Disconnect_nb . 132

7. Job Allocation Management and Reporting 134
7.1. Query . 134

7.1.1. PMIx_Resolve_peers . 135
7.1.2. PMIx_Resolve_nodes . 135
7.1.3. PMIx_Query_info_nb . 136

7.2. Allocation Requests . 139
7.2.1. PMIx_Allocation_request_nb 139
7.2.2. PMIx_Job_control_nb . 141

7.3. Process and Job Monitoring . 144
7.3.1. PMIx_Process_monitor_nb . 144
7.3.2. PMIx_Heartbeat . 146

7.4. Logging . 147
7.4.1. PMIx_Log_nb . 147

8. Event Notification 150
8.1. Notification and Management . 150

8.1.1. PMIx_Register_event_handler 152

Contents v

8.1.2. PMIx_Deregister_event_handler 155
8.1.3. PMIx_Notify_event . 156

9. Data Packing and Unpacking 159
9.1. Support Macros . 159

9.1.1. PMIX_DATA_BUFFER_CREATE . 159
9.1.2. PMIX_DATA_BUFFER_RELEASE . 160
9.1.3. PMIX_DATA_BUFFER_CONSTRUCT 160
9.1.4. PMIX_DATA_BUFFER_DESTRUCT 160
9.1.5. PMIX_DATA_BUFFER_LOAD . 161
9.1.6. PMIX_DATA_BUFFER_UNLOAD . 161

9.2. General Routines . 162
9.2.1. PMIx_Data_pack . 162
9.2.2. PMIx_Data_unpack . 164
9.2.3. PMIx_Data_copy . 166
9.2.4. PMIx_Data_print . 166
9.2.5. PMIx_Data_copy_payload . 167

10.Server-Specific Interfaces 169
10.1. Server Support Functions . 169

10.1.1. PMIx_generate_regex . 169
10.1.2. PMIx_generate_ppn . 170
10.1.3. PMIx_server_register_nspace 171
10.1.4. PMIx_server_deregister_nspace 175
10.1.5. PMIx_server_register_client 176
10.1.6. PMIx_server_deregister_client 177
10.1.7. PMIx_server_setup_fork . 178
10.1.8. PMIx_server_dmodex_request 179
10.1.9. PMIx_server_setup_application 180
10.1.10. PMIx_server_setup_local_support 181

10.2. Server Function Pointers . 183
10.2.1. pmix_server_module_tModule 183
10.2.2. pmix_server_client_connected_fn_t 184
10.2.3. pmix_server_client_finalized_fn_t 185

vi PMIx Standard – Version 2.0 – September 2018

10.2.4. pmix_server_abort_fn_t . 187
10.2.5. pmix_server_fencenb_fn_t . 188
10.2.6. pmix_server_dmodex_req_fn_t 190
10.2.7. pmix_server_publish_fn_t . 191
10.2.8. pmix_server_lookup_fn_t . 193
10.2.9. pmix_server_unpublish_fn_t 195
10.2.10. pmix_server_spawn_fn_t . 197
10.2.11. pmix_server_connect_fn_t . 201
10.2.12. pmix_server_disconnect_fn_t 203
10.2.13. pmix_server_register_events_fn_t 204
10.2.14. pmix_server_deregister_events_fn_t 206
10.2.15. pmix_server_notify_event_fn_t 207
10.2.16. pmix_server_listener_fn_t 209
10.2.17. pmix_server_query_fn_t . 210
10.2.18. pmix_server_tool_connection_fn_t 212
10.2.19. pmix_server_log_fn_t . 213
10.2.20. pmix_server_alloc_fn_t . 215
10.2.21. pmix_server_job_control_fn_t 218
10.2.22. pmix_server_monitor_fn_t . 221

A. Acknowledgements 224
A.1. Version 2.0 . 224
A.2. Version 1.0 . 225

Bibliography 227

Index 228

Contents vii

CHAPTER 1

Introduction

The Process Management Interface (PMI) has been used for quite some time as a means of1
exchanging wireup information needed for inter-process communication. Two versions (PMI-1 and2
PMI-2) have been released as part of the MPICH effort, with PMI-2 demonstrating better scaling3
properties than its PMI-1 predecessor. However, two significant challenges face the High4
Performance Computing (HPC) community as it continues to move towards machines capable of5
exaflop and higher performance levels:6

• the physical scale of the machines, and the corresponding number of total processes they support,7
is expected to reach levels approaching 1 million processes executing across 100 thousand nodes.8
Prior methods for initiating applications relied on exchanging communication endpoint9
information between the processes, either directly or in some form of hierarchical collective10
operation. Regardless of the specific mechanism employed, the exchange across such large11
applications would consume considerable time, with estimates running in excess of 5-1012
minutes; and13

• whether it be hybrid applications that combine OpenMP threading operations with MPI, or14
application-steered workflow computations, the HPC community is experiencing an15
unprecedented wave of new approaches for computing at exascale levels. One common thread16
across the proposed methods is an increasing need for orchestration between the application and17
the system management software stack (SMS) comprising the scheduler (a.k.a. the workload18
manager (WLM)), the resource manager (RM), global file system, fabric, and other subsystems.19
The lack of available support for application-to-SMS integration has forced researchers to20
develop "virtual" environments that hide the SMS behind a customized abstraction layer, but this21
results in considerable duplication of effort and a lack of portability.22

Process Management Interface - Exascale (PMIx) represents an attempt to resolve these questions23
by providing an extended version of the PMI definitions specifically designed to support clusters up24
to exascale and larger sizes. The overall objective of the project is not to branch the existing25
definitions – in fact, PMIx fully supports both of the existing PMI-1 and PMI-2 Application26
Programming Interfaces (APIs) – but rather to:27

a) add flexibility to the existing APIs by adding an array of key-value “attribute” pairs to each API28
signature that allows implementers to customize the behavior of the API as future needs emerge29
without having to alter or create new variants of it;30

b) add new APIs that provide extended capabilities such as asynchronous event notification plus31
dynamic resource allocation and management;32

1

c) establish a collaboration between SMS subsystem providers including resource manager, fabric,1
file system, and programming library developers to define integration points between the2
various subsystems as well as agreed upon definitions for associated APIs, attribute names, and3
data types;4

d) form a standards-like body for the definitions; and5
e) provide a reference implementation of the PMIx standard.6

Complete information about the PMIx standard and affiliated projects can be found at the PMIx7
web site: https://pmix.org8

1.1 Charter9

The charter of the PMIx community is to:10

• Define a set of agnostic APIs (not affiliated with any specific programming model or code base)11
to support interactions between application processes and the SMS.12

• Develop an open source (non-copy-left licensed) standalone “reference” library implementation13
to facilitate adoption of the PMIx standard.14

• Retain transparent backward compatibility with the existing PMI-1 and PMI-2 definitions, any15
future PMI releases, and across all PMIx versions.16

• Support the “Instant On” initiative for rapid startup of applications at exascale and beyond.17

• Work with the HPC community to define and implement new APIs that support evolving18
programming model requirements for application interactions with the SMS.19

Participation in the PMIx community is open to anyone, and not restricted to only code contributors20
to the reference implementation.21

1.2 PMIx Standard Overview22

The PMIx Standard defines and describes the interface developed by the PMIx Reference23
Implementation (PRI). Much of this document is specific to the PMIx Reference24
Implementation (PRI)’s design and implementation. Specifically the standard describes the25
functionality provided by the PRI, and what the PRI requires of the clients and resource26
managers (RMs) that use it’s interface.27

2 PMIx Standard – Version 2.0 – September 2018

https://pmix.org

1.2.1 Who should use the standard?1

The PMIx Standard informs PMIx clients and RMs of the syntax and semantics of the PMIx APIs.2

PMIx clients (e.g., tools, Message Passing Environment (MPE) libraries) can use this standard to3
understand the set of attributes provided by various APIs of the PRI and their intended behavior.4
Additional information about the rationale for the selection of specific interfaces and attributes is5
also provided.6

PMIx-enabled RMs can use this standard to understand the expected behavior required of them7
when they support various interfaces/attributes. In addition, optional features and suggestions on8
behavior are also included in the discussion to help guide RM design and implementation.9

1.2.2 What is defined in the standard?10

The PMIx Standard defines and describes the interface developed by the PMIx Reference11
Implementation (PRI). It defines the set of attributes that the PRI supports; the set of attributes that12
are required of a RM to support, for a given interface; and the set of optional attributes that an RM13
may choose to support, for a given interface.14

1.2.3 What is not defined in the standard?15

No standards body can require an implementer to support something in their standard, and PMIx is16
no different in that regard. While an implementer of the PMIx library itself must at least include the17
standard PMIx headers and instantiate each function, they are free to return “not supported” for any18
function they choose not to implement.19

This also applies to the host environments. Resource managers and other system management stack20
components retain the right to decide on support of a particular function. The PMIx community21
continues to look at ways to assist SMS implementers in their decisions by highlighting functions22
that are critical to basic application execution (e.g., PMIx_Get), while leaving flexibility for23
tailoring a vendor’s software for their target market segment.24

One area where this can become more complicated is regarding the attributes that provide25
information to the client process and/or control the behavior of a PMIx standard API. For example,26
the PMIX_TIMEOUT attribute can be used to specify the time (in seconds) before the requested27
operation should time out. The intent of this attribute is to allow the client to avoid “hanging” in a28
request that takes longer than the client wishes to wait, or may never return (e.g., a PMIx_Fence29
that a blocked participant never enters).30

If an application (for example) truly relies on the PMIX_TIMEOUT attribute in a call to31
PMIx_Fence , it should set the required flag in the pmix_info_t for that attribute. This32
informs the library and its SMS host that it must return an immediate error if this attribute is not33

CHAPTER 1. INTRODUCTION 3

supported. By not setting the flag, the library and SMS host are allowed to treat the attribute as1
optional, ignoring it if support is not available.2

It is therefore critical that users and application implementers:3

a) consider whether or not a given attribute is required, marking it accordingly; and4
b) check the return status on all PMIx function calls to ensure support was present and that the5

request was accepted. Note that for non-blocking APIs, a return of PMIX_SUCCESS only6
indicates that the request had no obvious errors and is being processed – the eventual callback7
will return the status of the requested operation itself.8

While a PMIx library implementer, or an SMS component server, may choose to support a9
particular PMIx API, they are not required to support every attribute that might apply to it. This10
would pose a significant barrier to entry for an implementer as there can be a broad range of11
applicable attributes to a given API, at least some of which may rarely be used. The PMIx12
community is attempting to help differentiate the attributes by indicating those that are generally13
used (and therefore, of higher importance to support) vs those that a “complete implementation”14
would support.15

Note that an environment that does not include support for a particular attribute/API pair is not16
“incomplete” or of lower quality than one that does include that support. Vendors must decide17
where to invest their time based on the needs of their target markets, and it is perfectly reasonable18
for them to perform cost/benefit decisions when considering what functions and attributes to19
support.20

The flip side of that statement is also true: Users who find that their current vendor does not support21
a function or attribute they require may raise that concern with their vendor and request that the22
implementation be expanded. Alternatively, users may wish to utilize the PMIx-based Reference23
RunTime Environment (PRRTE) as a “shim” between their application and the host environment as24
it might provide the desired support until the vendor can respond. Finally, in the extreme, one can25
exploit the portability of PMIx-based applications to change vendors.26

1.2.4 General Guidance for PMIx Users and Implementors27

The PMIx Standard defines the behavior of the PMIx Reference Implementation (PRI). A complete28
system harnessing the PMIx interface requires an agreement between the PMIx client, be it a tool or29
library, and the PMIx-enabled RM. The PRI acts as an intermediary between these two entities by30
providing a standard API for the exchange of requests and responses. The degree to which the31
PMIx client and the PMIx-enabled RM may interact needs to be defined by those developer32
communities. The PMIx standard can be used to define the specifics of this interaction.33

PMIx clients (e.g., tools, MPE libraries) may find that they depend only on a small subset of34
interfaces and attributes to work correctly. PMIx clients are strongly advised to define a document35
itemizing the PMIx interfaces and associated attributes that are required for correct operation, and36
are optional but recommended for full functionality. The PMIx standard cannot define this list for37
all given PMIx clients, but such a list is valuable to RMs desiring to support these clients.38

4 PMIx Standard – Version 2.0 – September 2018

PMIx-enabled RMs may choose to implement a subset of the PMIx standard and/or define attributes1
beyond those defined herein. PMIx-enabled RMs are strongly advised to define a document2
itemizing the PMIx interfaces and associated attributes they support, with any annotations about3
behavior limitations. The PMIx standard cannot define this list for all given PMIx-enabled RMs,4
but such a list is valuable to PMIx clients desiring to support a broad range of PMIx-enabled RMs.5

1.3 PMIx Architecture Overview6

This section presents a brief overview of the PMIx Architecture [1]. Note that this is a conceptual7
model solely used to help guide the standards process — it does not represent a design requirement8
on any PMIx implementation. Instead, the model is used by the PMIx community as a sounding9
board for evaluating proposed interfaces and avoid unintentionally imposing constraints on10
implementers. Built into the model are two guiding principles also reflected in the standard. First,11
PMIx operates in the mode of a messenger, and not a doer — i.e., the role of PMIx is to provide12
communication between the various participants, relaying requests and returning responses. The13
intent of the standard is not to suggest that PMIx itself actually perform any of the defined14
operations — this is left to the various SMS elements and/or the application. Any exceptions to that15
intent are left to the discretion of the particular implementation.16

RM

PMIx
Client

FS

Fabric

RAS

APP

Orchestration
Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

Job
Script

System
Management Stack

Tool Support

Figure 1.1.: PMIx-SMS Interactions

Thus, as the diagram in Fig. 1.1 shows, the application is built against a PMIx client library that17
contains the client-side APIs, attribute definitions, and communication support for interacting with18
the local PMIx server. Intra-process cross-library interactions are supported at the client level to19
avoid unnecessary burdens on the server. Orchestration requests are sent to the local PMIx server,20
which subsequently passes them to the host SMS (here represented by an RM daemon) using the21

CHAPTER 1. INTRODUCTION 5

PMIx server callback functions the host SMS registered during PMIx_server_init. The host SMS1
can indicate its lack of support for any operation by simply providing a NULL for the associated2
callback function, or can create a function entry that returns not supported when called.3

The conceptual model places the burden of fulfilling the request on the host SMS. This includes4
performing any inter-node communications, or interacting with other SMS elements. Thus, a client5
request for a network traffic report does not go directly from the client to the Fabric Manager (FM),6
but instead is relayed to the PMIx server, and then passed to the host SMS for execution. This7
architecture reflects the second principle underlying the standard — namely, that connectivity is to8
be minimized by channeling all application interactions with the SMS through the local PMIx9
server.10

Recognizing the burden this places on SMS vendors, the PMIx community has included interfaces11
by which the host can request support from local SMS elements. Once the SMS has transferred the12
request to an appropriate location, a PMIx server interface can be used to pass the request between13
SMS subsystems. For example, a request for network traffic statistics can utilize the PMIx14
networking abstractions to retrieve the information from the FM. This reduces the portability and15
interoperability issues between the individual subsystems by transferring the burden of defining the16
interoperable interfaces from the SMS subsystems to the PMIx community, which continues to17
work with those providers to develop the necessary support.18

Tools, whether standalone or embedded in job scripts, are an exception to the communication rule19
and can connect to any PMIx server providing they are given adequate rendezvous information. The20
PMIx conceptual model views the collection of PMIx servers as a cloud-like conglomerate — i.e.,21
orchestration and information requests can be given to any server regardless of location. However,22
tools frequently execute on locations that may not house an operating PMIx server — e.g., a users23
notebook computer. Thus, tools need the ability to remotely connect to the PMIx server “cloud”.24

The scope of the PMIx standard therefore spans the range of these interactions, between25
client-and-SMS and between SMS subsystems. Note again that this does not impose a requirement26
on any given PMIx implementation to cover the entire range — implementers are free to return not27
supported from any PMIx function.28

1.3.1 The PMIx Reference Implementation (PRI)29

The PMIx community has committed to providing a complete, reference implementation of each30
version of the standard. Note that the definition of the PMIx Standard is not contingent upon use of31
the PMIx Reference Implementation (PRI) — any implementation that supports the defined APIs is32
a PMIx Standard compliant implementation. The PRI is provided solely for the following purposes:33

• Validation of the standard.34
No proposed change and/or extension to the PMIx standard is accepted without an accompanying35
prototype implementation in the PRI. This ensures that the proposal has undergone at least some36
minimal level of scrutiny and testing before being considered.37

6 PMIx Standard – Version 2.0 – September 2018

• Ease of adoption.1
The PRI is designed to be particularly easy for resource managers (and the SMS in general) to2
adopt, thus facilitating a rapid uptake into that community for application portability. Both client3
and server PMIx libraries are included, along with examples of client usage and server-side4
integration. A list of supported environments and versions is maintained on the PMIx web site5
https://pmix.org/support/faq/what-apis-are-supported-on-my-rm/6

The PRI does provide some internal implementations that lie outside the scope of the PMIx7
standard. This includes several convenience macros as well as support for consolidating collectives8
for optimization purposes (e.g., the PMIx server aggregates all local PMIx_Fence calls before9
passing them to the SMS for global execution). In a few additional cases, the PMIx community (in10
partnership with the SMS subsystem providers) have determined that a base level of support for a11
given operation can best be portably provided by including it in the PRI.12

Instructions for downloading, and installing the PRI are available on the community’s web site13
https://pmix.org/code/getting-the-reference-implementation/.The PRI targets support for the Linux14
operating system. A reasonable effort is made to support all major, modern Linux distributions;15
however, validation is limited to the most recent 2-3 releases of RedHat Enterprise Linux (RHEL),16
Fedora, CentOS, and SUSE Linux Enterprise Server (SLES). In addition, development support is17
maintained for Mac OSX. Production support for vendor-specific operating systems is included as18
provided by the vendor.19

1.3.2 The PMIx Reference RunTime Environment (PRRTE)20

The PMIx community has also released PRRTE — i.e., a runtime environment containing the21
reference implementation and capable of operating within a host SMS. PRRTE provides an easy22
way of exploring PMIx capabilities and testing PMIx-based applications outside of a PMIx-enabled23
environment by providing a “shim” between the application and the host environment that includes24
full support for the PRI. The intent of PRRTE is not to replace any existing production25
environment, but rather to enable developers to work on systems that do not yet feature a26
PMIx-enabled host SMS or one that lacks a PMIx feature of interest. Instructions for downloading,27
installing, and using PRRTE are available on the community’s web site28
https://pmix.org/code/getting-the-pmix-reference-server/29

1.4 Organization of this document30

The remainder of this document is structured as follows:31

• Introduction and Overview in Chapter 1 on page 132

• Terms and Conventions in Chapter 2 on page 1033

• Data Structures and Types in Chapter 3 on page 1534

CHAPTER 1. INTRODUCTION 7

https://pmix.org/support/faq/what-apis-are-supported-on-my-rm/
https://pmix.org/code/getting-the-reference-implementation/
https://pmix.org/code/getting-the-pmix-reference-server/

• PMIx Initialization and Finalization in Chapter 4 on page 821

• Key/Value Management in Chapter 5 on page 952

• Process Management in Chapter 6 on page 1173

• Job Management in Chapter 7 on page 1344

• Event Notification in Chapter 8 on page 1505

• Data Packing and Unpacking in Chapter 9 on page 1596

• PMIx Server Specific Interfaces in Chapter 10 on page 1697

1.5 Version 1.0: June 12, 20158

The PMIx version 1.0 ad hoc standard was defined in the PMIx Reference Implementation (PRI)9
header files as part of the PRI v1.0.0 release prior to the creation of the formal PMIx 2.0 standard.10
Below are a summary listing of the interfaces defined in the 1.0 headers.11

• Client APIs12

– PMIx_Init, PMIx_Initialized , PMIx_Abort , PMIx_Finalize13

– PMIx_Put , PMIx_Commit ,14

– PMIx_Fence , PMIx_Fence_nb15

– PMIx_Get , PMIx_Get_nb16

– PMIx_Publish , PMIx_Publish_nb17

– PMIx_Lookup , PMIx_Lookup18

– PMIx_Unpublish , PMIx_Unpublish_nb19

– PMIx_Spawn , PMIx_Spawn_nb20

– PMIx_Connect , PMIx_Connect_nb21

– PMIx_Disconnect , PMIx_Disconnect_nb22

– PMIx_Resolve_nodes , PMIx_Resolve_peers23

• Server APIs24

– PMIx_server_init , PMIx_server_finalize25

– PMIx_generate_regex , PMIx_generate_ppn26

– PMIx_server_register_nspace , PMIx_server_deregister_nspace27

– PMIx_server_register_client , PMIx_server_deregister_client28

8 PMIx Standard – Version 2.0 – September 2018

– PMIx_server_setup_fork , PMIx_server_dmodex_request1

• Common APIs2

– PMIx_Get_version , PMIx_Store_internal , PMIx_Error_string3

– PMIx_Register_errhandler , PMIx_Deregister_errhandler ,4
PMIx_Notify_error5

The PMIx_Init API was subsequently modified in the PRI release v1.1.0.6

1.6 Version 2.0: Sept. 20187

The following APIs were introduced in v2.0 of the PMIx Standard:8

• Client APIs9

– PMIx_Query_info_nb , PMIx_Log_nb10

– PMIx_Allocation_request_nb , PMIx_Job_control_nb ,11
PMIx_Process_monitor_nb , PMIx_Heartbeat12

• Server APIs13

– PMIx_server_setup_application , PMIx_server_setup_local_support14

• Tool APIs15

– PMIx_tool_init , PMIx_tool_finalize16

• Common APIs17

– PMIx_Register_event_handler , PMIx_Deregister_event_handler18

– PMIx_Notify_event19

– PMIx_Proc_state_string , PMIx_Scope_string20

– PMIx_Persistence_string , PMIx_Data_range_string21

– PMIx_Info_directives_string , PMIx_Data_type_string22

– PMIx_Alloc_directive_string23

– PMIx_Data_pack , PMIx_Data_unpack , PMIx_Data_copy24

– PMIx_Data_print , PMIx_Data_copy_payload25

The PMIx_Init API was modified in v2.0 of the standard from its ad hoc v1.0 signature to26
include passing of a pmix_info_t array for flexibility and “future-proofing” of the API. In27
addition, the PMIx_Notify_error, PMIx_Register_errhandler, and28
PMIx_Deregister_errhandler APIs were replaced.29

CHAPTER 1. INTRODUCTION 9

CHAPTER 2

PMIx Terms and Conventions

The PMIx Standard has adopted the widespread use of key-value attributes to add flexibility to the1
functionality expressed in the existing APIs. Accordingly, the community has chosen to require that2
the definition of each standard API include the passing of an array of attributes. These provide a3
means of customizing the behavior of the API as future needs emerge without having to alter or4
create new variants of it. In addition, attributes provide a mechanism by which researchers can5
easily explore new approaches to a given operation without having to modify the API itself.6

The PMIx community has further adopted a policy that modification of existing released APIs will7
only be permitted under extreme circumstances. In its effort to avoid introduction of any such8
backward incompatibility, the community has avoided the definitions of large numbers of APIs that9
each focus on a narrow scope of functionality, and instead relied on the definition of fewer generic10
APIs that include arrays of directives for “tuning” the function’s behavior. Thus, modifications to11
the PMIx standard increasingly consist of the definition of new attributes along with a description12
of the APIs to which they relate and the expected behavior when used with those APIs.13

One area where this can become more complicated relates to the attributes that provide directives to14
the client process and/or control the behavior of a PMIx standard API. For example, the15
PMIX_TIMEOUT attribute can be used to specify the time (in seconds) before the requested16
operation should time out. The intent of this attribute is to allow the client to avoid hanging in a17
request that takes longer than the client wishes to wait, or may never return (e.g., a PMIx_Fence18
that a blocked participant never enters).19

If an application truly relies on the PMIX_TIMEOUT attribute in a call to PMIx_Fence , it20
should set the required flag in the pmix_info_t for that attribute. This informs the library and21
its SMS host that it must return an immediate error if this attribute is not supported. By not setting22
the flag, the library and SMS host are allowed to treat the attribute as optional, silently ignoring it if23
support is not available.24

Advice to users

It is critical that users and application developers consider whether or not a given attribute is25
required (marking it accordingly) and always check the return status on all PMIx function calls to26
ensure support was present and that the request was accepted. Note that for non-blocking APIs, a27
return of PMIX_SUCCESS only indicates that the request had no obvious errors and is being28
processed. The eventual callback will return the status of the requested operation itself.29

10

While a PMIx library implementer, or an SMS component server, may choose to support a1
particular PMIx API, they are not required to support every attribute that might apply to it. This2
would pose a significant barrier to entry for an implementer as there can be a broad range of3
applicable attributes to a given API, at least some of which may rarely be used in a specific market4
area. The PMIx community is attempting to help differentiate the attributes by indicating in the5
standard those that are generally used (and therefore, of higher importance to support) versus those6
that a “complete implementation” would support.7

This document borrows freely from other standards (most notably from the Message Passing8
Interface (MPI) and OpenMP standards) in its use of notation and conventions in an attempt to9
reduce confusion. The following sections provide an overview of the conventions used throughout10
the PMIx Standard document.11

2.1 Notational Conventions12

Some sections of this document describe programming language specific examples or APIs. Text13
that applies only to programs for which the base language is C is shown as follows:14

C
C specific text...15

int foo = 42;16

C

Some text is for information only, and is not part of the normative specification. These take several17
forms, described in their examples below:18

Note: General text...19

Rationale

Throughout this document, the rationale for the design choices made in the interface specification is20
set off in this section. Some readers may wish to skip these sections, while readers interested in21
interface design may want to read them carefully.22

Advice to users

Throughout this document, material aimed at users and that illustrates usage is set off in this23
section. Some readers may wish to skip these sections, while readers interested in programming24
with the PMIx API may want to read them carefully.25

CHAPTER 2. PMIX TERMS AND CONVENTIONS 11

Advice to PMIx library implementers

Throughout this document, material that is primarily commentary to PMIx library implementers is1
set off in this section. Some readers may wish to skip these sections, while readers interested in2
PMIx implementations may want to read them carefully.3

Advice to PMIx server hosts

Throughout this document, material that is primarily commentary aimed at host environments (e.g.,4
RMs and RunTime Environments (RTEs)) providing support for the PMIx server library is set off in5
this section. Some readers may wish to skip these sections, while readers interested in integrating6
PMIx servers into their environment may want to read them carefully.7

2.2 Semantics8

The following terms will be taken to mean:9

• shall and will indicate that the specified behavior is required of all conforming implementations10

• should and may indicate behaviors that a quality implementation would include, but are not11
required of all conforming implementations12

In addition, the document refers the following entities and process stages when describing use-cases13
or operations involving PMIx:14

• session refers to an allocated set of resources assigned to a particular user by the system WLM.15

• job refers to an application executed by the user within a session16

• resource manager is used in a generic sense to represent the system that will host the PMIx17
server library. This could be a vendor’s RM, a programming library’s RTE, or some other agent.18

12 PMIx Standard – Version 2.0 – September 2018

2.3 Naming Conventions1

The PMIx standard has adopted the following conventions:2

• PMIx constants and attributes are prefixed with PMIX.3

• Structures and type definitions are prefixed with pmix.4

• Underscores are used to separate words in a function or variable name.5

• Lowercase letters are used in PMIx client APIs except for the PMIx prefix (noted below) and the6
first letter of the word following it. For example, PMIx_Get_version .7

• PMIx server and tool APIs are all lower case letters following the prefix - e.g.,8
PMIx_server_register_nspace .9

• The PMIx_ prefix is used to denote functions.10

• The pmix_ prefix is used to denote function pointer and type definitions.11

Users should not use the PMIX, PMIx, or pmix prefixes in their applications or libraries so as to12
avoid symbol conflicts with current and later versions of the PMIx standard and implementations13
such as the PRI.14

2.4 Procedure Conventions15

While the current PMIx Reference Implementation (PRI) is solely based on the C programming16
language, it is not the intent of the PMIx Standard to preclude the use of other languages.17
Accordingly, the procedure specifications in the PMIx Standard are written in a18
language-independent syntax with the arguments marked as IN, OUT, or INOUT. The meanings of19
these are:20

• IN: The call may use the input value but does not update the argument from the perspective of21
the caller at any time during the calls execution,22

• OUT: The call may update the argument but does not use its input value23

• INOUT: The call may both use and update the argument.24

2.5 Standard vs Reference Implementation25

The PMIx Standard is implementation independent. The PMIx Reference Implementation (PRI) is26
one implementation of the Standard and the PMIx community strives to ensure that it fully27
implements the Standard. Given its role as the community’s testbed and its widespread use, this28
document cites the attributes supported by the PRI for each API where relevant by marking them in29

CHAPTER 2. PMIX TERMS AND CONVENTIONS 13

red. This is not meant to imply nor confer any special role to the PRI with respect to the Standard1
itself, but instead to provide a convenience to users of the Standard and PRI.2

Similarly, the PMIx Reference RunTime Environment (PRRTE) is provided by the community to3
enable users operating in non-PMIx environments to develop and execute PMIx-enabled4
applications and tools. Attributes supported by the PRRTE are marked in green.5

14 PMIx Standard – Version 2.0 – September 2018

CHAPTER 3

Data Structures and Types

This chapter defines PMIx standard data structures, types, and constants. These apply to all1
consumers of the PMIx interface. Where necessary for clarification, the description of, for2
example, an attribute may be copied from this chapter into a section where it is used.3

A PMIx implementation may define additional attributes beyond those specified in this document.4

Advice to PMIx library implementers

Structures, types, and macros in the PMIx Standard are defined in terms of the C-programming5
language. Implementers wishing to support other languages should provide the equivalent6
definitions in a language-appropriate manner.7

If a PMIx implementation chooses to define additional attributes they should avoid using the PMIX8
prefix in their name or starting the attribute string with a pmix prefix. This helps the end user9
distinguish between what is defined by the PMIx standard and what is specific to that PMIx10
implementation, and avoids potential conflicts with attributes defined by the standard.11

3.1 Constants12

PMIx defines a few values that are used throughout the standard to set the size of fixed arrays or as13
a means of identifying values with special meaning. The community makes every attempt to14
minimize the number of such definitions. The constants defined in this section may be used before15
calling any PMIx library initialization routine. Additional constants associated with specific data16
structures or types are defined in the section describing that data structure or type.17

PMIX_MAX_NSLEN Maximum namespace string length as an integer.18

Advice to PMIx library implementers

PMIX_MAX_NSLEN should have a minimum value of 63 characters. Namespace arrays in PMIx19
defined structures must reserve a space of size PMIX_MAX_NSLEN +1 to allow room for the NULL20
terminator21

PMIX_MAX_KEYLEN Maximum key string length as an integer.22

15

Advice to PMIx library implementers

PMIX_MAX_KEYLEN should have a minimum value of 63 characters. Key arrays in PMIx defined1
structures must reserve a space of size PMIX_MAX_KEYLEN +1 to allow room for the NULL2
terminator3

3.1.1 Error Constants4

The pmix_status_t structure is an int type for return status.5

The tables shown in this section define the possible values for pmix_status_t . PMIx errors are6
required to always be negative, with 0 reserved for PMIX_SUCCESS .7

A PMIx implementation must define all of the constants defined in this section, even if they will8
never return the specific value to the caller.9

Advice to users

Other than PMIX_SUCCESS (which is required to be zero), the actual value of any PMIx error10
constant is left to the PMIx library implementer. Thus, users are advised to always refer to constant11
by name, and not a specific implementation’s value, for portability between implementations and12
compatibility across library versions.13

16 PMIx Standard – Version 2.0 – September 2018

3.1.1.1 PMIx v1 Error Constants1

The following list contains those constants defined in the PMIx v1 standard. Those values in the list2
that were deprecated in later standards are denoted as such. PMIx errors are always negative, with 03
reserved for success.4

PMIX_SUCCESS Success5
PMIX_ERROR General Error6
PMIX_ERR_SILENT Silent error7
PMIX_ERR_DEBUGGER_RELEASE Error in debugger release8
PMIX_ERR_PROC_RESTART Fault tolerance: Error in process restart9
PMIX_ERR_PROC_CHECKPOINT Fault tolerance: Error in process checkpoint10
PMIX_ERR_PROC_MIGRATE Fault tolerance: Error in process migration11
PMIX_ERR_PROC_ABORTED Process was aborted12
PMIX_ERR_PROC_REQUESTED_ABORT Process is already requested to abort13
PMIX_ERR_PROC_ABORTING Process is being aborted14
PMIX_ERR_SERVER_FAILED_REQUEST Failed to connect to the server15
PMIX_EXISTS Requested operation would overwrite an existing value16
PMIX_ERR_INVALID_CRED Invalid security credentials17
PMIX_ERR_HANDSHAKE_FAILED Connection handshake failed18
PMIX_ERR_READY_FOR_HANDSHAKE Ready for handshake19
PMIX_ERR_WOULD_BLOCK Operation would block20
PMIX_ERR_UNKNOWN_DATA_TYPE Unknown data type21
PMIX_ERR_PROC_ENTRY_NOT_FOUND Process not found22
PMIX_ERR_TYPE_MISMATCH Invalid type23
PMIX_ERR_UNPACK_INADEQUATE_SPACE Inadequate space to unpack data24
PMIX_ERR_UNPACK_FAILURE Unpack failed25
PMIX_ERR_PACK_FAILURE Pack failed26
PMIX_ERR_PACK_MISMATCH Pack mismatch27
PMIX_ERR_NO_PERMISSIONS No permissions28
PMIX_ERR_TIMEOUT Timeout expired29
PMIX_ERR_UNREACH Unreachable30
PMIX_ERR_IN_ERRNO Error defined in errno31
PMIX_ERR_BAD_PARAM Bad parameter32
PMIX_ERR_RESOURCE_BUSY Resource busy33
PMIX_ERR_OUT_OF_RESOURCE Resource exhausted34
PMIX_ERR_DATA_VALUE_NOT_FOUND Data value not found35
PMIX_ERR_INIT Error during initialization36
PMIX_ERR_NOMEM Out of memory37
PMIX_ERR_INVALID_ARG Invalid argument38
PMIX_ERR_INVALID_KEY Invalid key39
PMIX_ERR_INVALID_KEY_LENGTH Invalid key length40
PMIX_ERR_INVALID_VAL Invalid value41

CHAPTER 3. DATA STRUCTURES AND TYPES 17

PMIX_ERR_INVALID_VAL_LENGTH Invalid value length1
PMIX_ERR_INVALID_LENGTH Invalid argument length2
PMIX_ERR_INVALID_NUM_ARGS Invalid number of arguments3
PMIX_ERR_INVALID_ARGS Invalid arguments4
PMIX_ERR_INVALID_NUM_PARSED Invalid number parsed5
PMIX_ERR_INVALID_KEYVALP Invalid key/value pair6
PMIX_ERR_INVALID_SIZE Invalid size7
PMIX_ERR_INVALID_NAMESPACE Invalid namespace8
PMIX_ERR_SERVER_NOT_AVAIL Server is not available9
PMIX_ERR_NOT_FOUND Not found10
PMIX_ERR_NOT_SUPPORTED Not supported11
PMIX_ERR_NOT_IMPLEMENTED Not implemented12
PMIX_ERR_COMM_FAILURE Communication failure13
PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER Unpacking past the end of the buffer14

provided15

3.1.1.2 PMIx v2 Error Constants16

The following list contains constants added in the PMIx v2 standard.17

PMIX_ERR_LOST_CONNECTION_TO_SERVER Lost connection to server18
PMIX_ERR_LOST_PEER_CONNECTION Lost connection to peer19
PMIX_ERR_LOST_CONNECTION_TO_CLIENT Lost connection to client20
PMIX_QUERY_PARTIAL_SUCCESS Query partial success (used by query system)21
PMIX_NOTIFY_ALLOC_COMPLETE Notify that allocation is complete22
PMIX_JCTRL_CHECKPOINT Job control: Monitored by PMIx client to trigger checkpoint23

operation24
PMIX_JCTRL_CHECKPOINT_COMPLETE Job control: Sent by PMIx client and monitored25

by PMIx server to notify that requested checkpoint operation has completed.26
PMIX_JCTRL_PREEMPT_ALERT Job control: Monitored by PMIx client to detect an RM27

intending to preempt the job.28
PMIX_MONITOR_HEARTBEAT_ALERT Job monitoring: Heartbeat alert29
PMIX_MONITOR_FILE_ALERT Job monitoring: File alert30
PMIX_PROC_TERMINATED Process terminated - can be either normal or abnormal31

termination32
PMIX_ERR_INVALID_TERMINATION Process terminated without calling33

PMIx_Finalize , or was a member of an assemblage formed via PMIx_Connect and34
terminated or called PMIx_Finalize without first calling PMIx_Disconnect (or its35
non-blocking form) from that assemblage.36

The following list contains operational error constants introduced in the v2 standard.37

PMIX_ERR_EVENT_REGISTRATION Error in event registration38
PMIX_ERR_JOB_TERMINATED Error job terminated39
PMIX_ERR_UPDATE_ENDPOINTS Error updating endpoints40

18 PMIx Standard – Version 2.0 – September 2018

PMIX_MODEL_DECLARED Model declared1
PMIX_GDS_ACTION_COMPLETE The global data storage (GDS) action has completed2
PMIX_ERR_INVALID_OPERATION The requested operation is supported by the3

implementation and host environment, but fails to meet a requirement (e.g., requesting to4
disconnect from processes without first connecting to them).5

The following list contains system error constants introduced in the v2 standard.6

PMIX_ERR_NODE_DOWN Node down7
PMIX_ERR_NODE_OFFLINE Node is marked as offline8

The following list contains event handler error constants introduced in the v2 standard.9

PMIX_EVENT_NO_ACTION_TAKEN Event handler: No action taken10
PMIX_EVENT_PARTIAL_ACTION_TAKEN Event handler: Partial action taken11
PMIX_EVENT_ACTION_DEFERRED Event handler: Action deferred12
PMIX_EVENT_ACTION_COMPLETE Event handler: Action complete13

3.1.1.3 User-Defined Error Constants14

PMIx establishes an error code boundary for constants defined in the PMIx standard. Negative15
values larger than this (and any positive values greater than zero) are guaranteed not to conflict with16
PMIx values.17

PMIX_EXTERNAL_ERR_BASE A starting point for user-level defined error constants.18
Negative values lower than this are guaranteed not to conflict with PMIx values. Definitions19
should always be based on the PMIX_EXTERNAL_ERR_BASE constant and not a specific20
value as the value of the constant may change.21

3.2 Data Types22

This section defines various data types used by the PMIx APIs.23

3.2.1 Key Structure24

The pmix_key_t structure is a statically defined character array of length PMIX_MAX_KEYLEN25
+1, thus supporting keys of maximum length PMIX_MAX_KEYLEN while preserving space for a26
mandatory NULL terminator.27

PMIx v2.0 C
typedef char pmix_key_t[PMIX_MAX_KEYLEN+1];28

CHAPTER 3. DATA STRUCTURES AND TYPES 19

C

Characters in the key must be standard alphanumeric values supported by common utilities such as1
strcmp.2

Advice to users

References to keys in PMIx v1 rwere defined simply as an array of characters of size3
PMIX_MAX_KEYLEN+1. The pmix_key_t type definition was introduced in version 2 of the4
standard. The two definitions are code-compatible and thus do not represent a break in backward5
compatibility.6

Passing a pmix_key_t value to the standard sizeof utility can result in compiler warnings of7
incorrect returned value. Users are advised to avoid using sizeof(pmix_key_t) and instead rely on8
the PMIX_MAX_KEYLEN constant.9

3.2.2 Namespace Structure10

The pmix_nspace_t structure is a statically defined character array of length11
PMIX_MAX_NSLEN +1, thus supporting namespaces of maximum length PMIX_MAX_NSLEN12
while preserving space for a mandatory NULL terminator.13

PMIx v2.0 C
typedef char pmix_nspace_t[PMIX_MAX_NSLEN+1];14

C

Characters in the namespace must be standard alphanumeric values supported by common utilities15
such as strcmp.16

Advice to users

References to namespace values in PMIx v1 rwere defined simply as an array of characters of size17
PMIX_MAX_NSLEN+1. The pmix_nspace_t type definition was introduced in version 2 of the18
standard. The two definitions are code-compatible and thus do not represent a break in backward19
compatibility.20

Passing a pmix_nspace_t value to the standard sizeof utility can result in compiler warnings of21
incorrect returned value. Users are advised to avoid using sizeof(pmix_nspace_t) and instead rely22
on the PMIX_MAX_NSLEN constant.23

20 PMIx Standard – Version 2.0 – September 2018

3.2.3 Rank Structure1

The pmix_rank_t structure is a uint32_t type for rank values.2

PMIx v1.0 C
typedef uint32_t pmix_rank_t;3

C

The following constants can be used to set a variable of the type pmix_rank_t . All definitions4
were introduced in version 1 of the standard unless otherwise marked. Valid rank values start at5
zero.6

PMIX_RANK_UNDEF A value to request job-level data where the information itself is not7
associated with any specific rank, or when passing a pmix_proc_t identifier to an8
operation that only references the namespace field of that structure.9

PMIX_RANK_WILDCARD A value to indicate that the user wants the data for the given key10
from every rank that posted that key.11

PMIx v2.0 PMIX_RANK_LOCAL_NODE Special rank value used to define groups of ranks for use in12
collectives. This constant defines the group of all ranks on a local node.13

3.2.4 Process Structure14

The pmix_proc_t structure is used to identify a single process in the PMIx universe. It contains15
a reference to the namespace and the pmix_rank_t within that namespace.16

PMIx v1.0 C
typedef struct pmix_proc {17

pmix_nspace_t nspace;18
pmix_rank_t rank;19

} pmix_proc_t;20

C

3.2.5 Process structure support macros21

The following macros are provided to support the pmix_proc_t structure.22

CHAPTER 3. DATA STRUCTURES AND TYPES 21

3.2.5.1 Initialize the pmix_proc_t structure1

Initialize the pmix_proc_t fields2

PMIx v1.0 C
PMIX_PROC_CONSTRUCT(m)3

C

IN m4
Pointer to the structure to be initialized (pointer to pmix_proc_t)5

3.2.5.2 Destruct the pmix_proc_t structure6

Clear the pmix_proc_t fields7

PMIx v1.0 C
PMIX_PROC_DESTRUCT(m)8

C

IN m9
Pointer to the structure to be destructed (pointer to pmix_proc_t)10

This macro performs the identical operations as PMIX_PROC_CONSTRUCT , but is provided for11
symmetry in user code.12

3.2.5.3 Create a pmix_proc_t array13

Allocate and initialize an array of pmix_proc_t structures14

PMIx v1.0 C
PMIX_PROC_CREATE(m, n)15

C

INOUT m16
Address where the pointer to the array of pmix_proc_t structures shall be stored (handle)17

IN n18
Number of structures to be allocated (size_t)19

22 PMIx Standard – Version 2.0 – September 2018

3.2.5.4 Free a pmix_proc_t array1

Release an array of pmix_proc_t structures2

PMIx v1.0 C
PMIX_PROC_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_proc_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

3.2.5.5 Load a pmix_proc_t structure8

Load values into a pmix_proc_t9

PMIx v2.0 C
PMIX_PROC_LOAD(m, n, r)10

C

IN m11
Pointer to the structure to be loaded (pointer to pmix_proc_t)12

IN n13
Namespace to be loaded (pmix_nspace_t)14

IN r15
Rank to be assigned (pmix_rank_t)16

3.2.6 Process State Structure17

PMIx v2.0 The pmix_proc_state_t structure is a uint8_t type for process state values. The following18
constants can be used to set a variable of the type pmix_proc_state_t . All values were19
originally defined in version 2 of the standard unless otherwise marked.20

Advice to users

The fine-grained nature of the following constants may exceed the ability of an RM to provide21
updated process state values during the process lifetime. This is particularly true of states in the22
launch process, and for short-lived processes.23

CHAPTER 3. DATA STRUCTURES AND TYPES 23

PMIX_PROC_STATE_UNDEF Undefined process state1
PMIX_PROC_STATE_PREPPED Process is ready to be launched2
PMIX_PROC_STATE_LAUNCH_UNDERWAY Process launch is underway3
PMIX_PROC_STATE_RESTART Process is ready for restart4
PMIX_PROC_STATE_TERMINATE Process is marked for termination5
PMIX_PROC_STATE_RUNNING Process has been locally fork’ed by the RM6
PMIX_PROC_STATE_CONNECTED Process has connected to PMIx server7
PMIX_PROC_STATE_UNTERMINATED Define a “boundary” between this constant and8

PMIX_PROC_STATE_CONNECTED so users can easily and quickly determine if a process9
is still running or not. Any value less than this constant means that the process has not10
terminated.11

PMIX_PROC_STATE_TERMINATED Process has terminated and is no longer running12
PMIX_PROC_STATE_ERROR Define a boundary so users can easily and quickly determine if13

a process abnormally terminated. Any value above this constant means that the process has14
terminated abnormally.15

PMIX_PROC_STATE_KILLED_BY_CMD Process was killed by a command16
PMIX_PROC_STATE_ABORTED Process was aborted by a call to PMIx_Abort17
PMIX_PROC_STATE_FAILED_TO_START Process failed to start18
PMIX_PROC_STATE_ABORTED_BY_SIG Process aborted by a signal19
PMIX_PROC_STATE_TERM_WO_SYNC Process exited without calling PMIx_Finalize20
PMIX_PROC_STATE_COMM_FAILED Process communication has failed21
PMIX_PROC_STATE_CALLED_ABORT Process called PMIx_Abort22
PMIX_PROC_STATE_MIGRATING Process failed and is waiting for resources before23

restarting24
PMIX_PROC_STATE_CANNOT_RESTART Process failed and cannot be restarted25
PMIX_PROC_STATE_TERM_NON_ZERO Process exited with a non-zero status26
PMIX_PROC_STATE_FAILED_TO_LAUNCH Unable to launch process27

3.2.7 Process Information Structure28

The pmix_proc_info_t structure defines a set of information about a specific process29
including it’s name, location, and state.30

PMIx v2.0

24 PMIx Standard – Version 2.0 – September 2018

C
typedef struct pmix_proc_info {1

/** Process structure */2
pmix_proc_t proc;3
/** Hostname where process resides */4
char *hostname;5
/** Name of the executable */6
char *executable_name;7
/** Process ID on the host */8
pid_t pid;9
/** Exit code of the process. Default: 0 */10
int exit_code;11
/** Current state of the process */12
pmix_proc_state_t state;13

} pmix_proc_info_t;14

C

3.2.8 Process Information Structure support macros15

The following macros are provided to support the pmix_proc_info_t structure.16

3.2.8.1 Initialize the pmix_proc_info_t structure17

Initialize the pmix_proc_info_t fields18

PMIx v2.0 C
PMIX_PROC_INFO_CONSTRUCT(m)19

C

IN m20
Pointer to the structure to be initialized (pointer to pmix_proc_info_t)21

3.2.8.2 Destruct the pmix_proc_info_t structure22

Destruct the pmix_proc_info_t fields23

PMIx v2.0 C
PMIX_PROC_INFO_DESTRUCT(m)24

C

IN m25
Pointer to the structure to be destructed (pointer to pmix_proc_info_t)26

CHAPTER 3. DATA STRUCTURES AND TYPES 25

3.2.8.3 Create a pmix_proc_info_t array1

Allocate and initialize a pmix_proc_info_t array2

PMIx v2.0 C
PMIX_PROC_INFO_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_proc_info_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

3.2.8.4 Free a pmix_proc_info_t array9

Release an array of pmix_proc_info_t structures10

PMIx v2.0 C
PMIX_PROC_INFO_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_proc_info_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

3.2.9 Scope of Put Data16

PMIx v1.0 The pmix_scope_t structure is a uint8_t type that defines the scope for data passed to17
PMIx_Put . The following constants can be used to set a variable of the type pmix_scope_t .18
All definitions were introduced in version 1 of the standard unless otherwise marked.19

Specific implementations may support different scope values, but all implementations must support20
at least PMIX_GLOBAL . If a scope value is not supported, then the PMIx_Put call must return21
PMIX_ERR_NOT_SUPPORTED .22

PMIX_SCOPE_UNDEF Undefined scope23
PMIX_LOCAL The data is intended only for other application processes on the same node.24

Data marked in this way will not be included in data packages sent to remote requestors —25
i.e., it is only available to processes on the local node.26

PMIX_REMOTE The data is intended solely for applications processes on remote nodes. Data27
marked in this way will not be shared with other processes on the same node — i.e., it is only28
available to processes on remote nodes.29

26 PMIx Standard – Version 2.0 – September 2018

PMIX_GLOBAL The data is to be shared with all other requesting processes, regardless of1
location.2

PMIx v2.0 PMIX_INTERNAL The data is intended solely for this process and is not shared with other3
processes.4

3.2.10 Range of Published Data5

PMIx v1.0 The pmix_data_range_t structure is a uint8_t type that defines a range for data published6
via functions other than PMIx_Put - e.g., the PMIx_Publish API. The following constants7
can be used to set a variable of the type pmix_data_range_t . Several values were initially8
defined in version 1 of the standard but subsequently renamed and other values added in version 2.9
Thus, all values shown below are as they were defined in version 2 except where noted.10

PMIX_RANGE_UNDEF Undefined range11
PMIX_RANGE_RM Data is intended for the host resource manager.12
PMIX_RANGE_LOCAL Data is only available to processes on the local node.13
PMIX_RANGE_NAMESPACE Data is only available to processes in the same namespace.14
PMIX_RANGE_SESSION Data is only available to all processes in the session.15
PMIX_RANGE_GLOBAL Data is available to all processes.16
PMIX_RANGE_CUSTOM Range is specified in the pmix_info_t associated with this call.17
PMIX_RANGE_PROC_LOCAL Data is only available to this process.18

Advice to users

The names of the pmix_data_range_t values changed between version 1 and version 2 of the19
standard, thereby breaking backward compatibility20

3.2.11 Data Persistence Structure21

PMIx v1.0 The pmix_persistence_t structure is a uint8_t type that defines the policy for data22
published by clients via the PMIx_Publish API. The following constants can be used to set a23
variable of the type pmix_persistence_t . All definitions were introduced in version 1 of the24
standard unless otherwise marked.25

PMIX_PERSIST_INDEF Retain data until specifically deleted.26
PMIX_PERSIST_FIRST_READ Retain data until the first access, then the data is deleted.27
PMIX_PERSIST_PROC Retain data until the publishing process terminates.28
PMIX_PERSIST_APP Retain data until the application terminates.29
PMIX_PERSIST_SESSION Retain data until the session/allocation terminates.30

CHAPTER 3. DATA STRUCTURES AND TYPES 27

3.2.12 Value Structure1

The pmix_value_t structure is used to represent the value passed to PMIx_Put and retrieved2
by PMIx_Get , as well as many of the other PMIx functions.3

A collection of values may be specified under a single key by passing a pmix_value_t4
containing an array of type pmix_data_array_t , with each array element containing its own5
object. All members shown below were introduced in version 1 of the standard unless otherwise6
marked.7

PMIx v1.0 C
typedef struct pmix_value {8

pmix_data_type_t type;9
union {10

bool flag;11
uint8_t byte;12
char *string;13
size_t size;14
pid_t pid;15
int integer;16
int8_t int8;17
int16_t int16;18
int32_t int32;19
int64_t int64;20
unsigned int uint;21
uint8_t uint8;22
uint16_t uint16;23
uint32_t uint32;24
uint64_t uint64;25
float fval;26
double dval;27
struct timeval tv;28
time_t time; // version 2.029
pmix_status_t status; // version 2.030
pmix_rank_t rank; // version 2.031
pmix_proc_t *proc; // version 2.032
pmix_byte_object_t bo;33
pmix_persistence_t persist; // version 2.034
pmix_scope_t scope; // version 2.035
pmix_data_range_t range; // version 2.036
pmix_proc_state_t state; // version 2.037
pmix_proc_info_t *pinfo; // version 2.038
pmix_data_array_t *darray; // version 2.039
void *ptr; // version 2.040

28 PMIx Standard – Version 2.0 – September 2018

pmix_alloc_directive_t adir; // version 2.01
/**** DEPRECATED in PMIx 2 ****/2
pmix_info_array_t *array;3
/******************************/4

} data;5
} pmix_value_t;6

C

3.2.13 Value structure support macros7

The following macros are provided to support the pmix_value_t structure.8

3.2.13.1 Initialize the pmix_value_t structure9

Initialize the pmix_value_t fields10

PMIx v1.0 C
PMIX_VALUE_CONSTRUCT(m)11

C
IN m12

Pointer to the structure to be initialized (pointer to pmix_value_t)13

3.2.13.2 Destruct the pmix_value_t structure14

Destruct the pmix_value_t fields15

PMIx v1.0 C
PMIX_VALUE_DESTRUCT(m)16

C
IN m17

Pointer to the structure to be destructed (pointer to pmix_value_t)18

3.2.13.3 Create a pmix_value_t array19

Allocate and initialize an array of pmix_value_t structures20

PMIx v1.0 C
PMIX_VALUE_CREATE(m, n)21

C
INOUT m22

Address where the pointer to the array of pmix_value_t structures shall be stored23
(handle)24

IN n25
Number of structures to be allocated (size_t)26

CHAPTER 3. DATA STRUCTURES AND TYPES 29

3.2.13.4 Free a pmix_value_t array1

Release an array of pmix_value_t structures2

PMIx v1.0 C
PMIX_VALUE_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_value_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

3.2.14 Load a pmix_value_t structure8

Summary9

Load data into a pmix_value_t structure.10

PMIx v2.0 C
PMIX_VALUE_LOAD(v, d, t);11

C

IN v12
The pmix_value_t into which the data is to be loaded (pointer to pmix_value_t)13

IN d14
Pointer to the data value to be loaded (handle)15

IN t16
Type of the provided data value (pmix_data_type_t)17

Description18

This macro simplifies the loading of data into a pmix_value_t by correctly assigning values to19
the structure’s fields.20

Advice to users

The data will be copied into the pmix_value_t - thus, any data stored in the source value can be21
modified or free’d without affecting the copied data once the macro has completed.22

30 PMIx Standard – Version 2.0 – September 2018

3.2.14.1 Transfer data between pmix_value_t structures1

Summary2

Transfer the data value between two pmix_value_t structures.3

PMIx v2.0 C
PMIX_VALUE_XFER(r, d, s);4

C

OUT r5
Status code indicating success or failure of the transfer (pmix_status_t)6

IN d7
Pointer to the pmix_value_t destination (handle)8

IN s9
Pointer to the pmix_value_t source (handle)10

Description11

This macro simplifies the transfer of data between two pmix_value_t structures, ensuring that12
all fields are properly copied.13

Advice to users

The data will be copied into the destination pmix_value_t - thus, any data stored in the source14
value can be modified or free’d without affecting the copied data once the macro has completed.15

3.2.15 Info and Info Array Structures16

The pmix_info_t structure defines a key/value pair with associated directive. All fields were17
defined in version 1.0 unless otherwise marked.18

PMIx v1.0 C
typedef struct pmix_info_t {19

pmix_key_t key;20
pmix_info_directives_t flags; // version 2.021
pmix_value_t value;22

} pmix_info_t;23

C

The pmix_info_array structure defines an array of pmix_info_t structures.24

CHAPTER 3. DATA STRUCTURES AND TYPES 31

Note: The pmix_info_array structure has been deprecated and will be removed in future1
versions of the PMIx Standard.2

PMIx v1.0 C
typedef struct pmix_info_array {3

size_t size;4
pmix_info_t *array;5

} pmix_info_array_t;6

C

3.2.16 Info structure support macros7

The following macros are provided to support the pmix_info_t structure.8

3.2.16.1 Initialize the pmix_info_t structure9

Initialize the pmix_info_t fields10

PMIx v1.0 C
PMIX_INFO_CONSTRUCT(m)11

C

IN m12
Pointer to the structure to be initialized (pointer to pmix_info_t)13

3.2.16.2 Destruct the pmix_info_t structure14

Destruct the pmix_info_t fields15

PMIx v1.0 C
PMIX_INFO_DESTRUCT(m)16

C

IN m17
Pointer to the structure to be destructed (pointer to pmix_info_t)18

32 PMIx Standard – Version 2.0 – September 2018

3.2.16.3 Create a pmix_info_t array1

Allocate and initialize an array of pmix_info_t structures2

PMIx v1.0 C
PMIX_INFO_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_info_t structures shall be stored (handle)5

IN n6
Number of structures to be allocated (size_t)7

3.2.16.4 Free a pmix_info_t array8

Release an array of pmix_info_t structures9

PMIx v1.0 C
PMIX_INFO_FREE(m, n)10

C

IN m11
Pointer to the array of pmix_info_t structures (handle)12

IN n13
Number of structures in the array (size_t)14

3.2.16.5 Load key and value data into a pmix_info_t15

PMIx v1.0 C
PMIX_INFO_LOAD(v, k, d, t);16

C

IN v17
Pointer to the pmix_info_t into which the key and data are to be loaded (pointer to18
pmix_info_t)19

IN k20
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length21
(handle)22

IN d23
Pointer to the data value to be loaded (handle)24

IN t25
Type of the provided data value (pmix_data_type_t)26

This macro simplifies the loading of key and data into a pmix_info_t by correctly assigning27
values to the structure’s fields.28

CHAPTER 3. DATA STRUCTURES AND TYPES 33

Advice to users

Both key and data will be copied into the pmix_info_t - thus, the key and any data stored in the1
source value can be modified or free’d without affecting the copied data once the macro has2
completed.3

3.2.16.6 Copy data between pmix_info_t structures4

Copy all data (including key, value, and directives) between two pmix_info_t structures.5

PMIx v2.0 C
PMIX_INFO_XFER(d, s);6

C

IN d7
Pointer to the destination pmix_info_t (pointer to pmix_info_t)8

IN s9
Pointer to the source pmix_info_t (pointer to pmix_info_t)10

This macro simplifies the transfer of data between two pmix_info_t structures.11

Advice to users

All data (including key, value, and directives) will be copied into the destination pmix_info_t -12
thus, the source pmix_info_t may be free’d without affecting the copied data once the macro13
has completed.14

3.2.16.7 Test a boolean pmix_info_t15

A special macro for checking if a boolean pmix_info_t is true16

PMIx v2.0 C
PMIX_INFO_TRUE(m)17

C

IN m18
Pointer to a pmix_info_t structure (handle)19

A pmix_info_t structure is considered to be of type PMIX_BOOL and value true if:20

• the structure reports a type of PMIX_UNDEF , or21

• the structure reports a type of PMIX_BOOL and the data flag is true22

34 PMIx Standard – Version 2.0 – September 2018

3.2.17 Info Type Directives1

PMIx v2.0 The pmix_info_directives_t structure is a uint32_t type that defines the behavior of2
command directives via pmix_info_t arrays. By default, the values in the pmix_info_t3
array passed to a PMIx are optional.4

Advice to users

A PMIx implementation or PMIx-enabled RM may ignore any pmix_info_t value passed to a5
PMIx API if it is not explicitly marked as PMIX_INFO_REQD . This is because the values6
specified default to optional, meaning they can be ignored. This may lead to unexpected behavior if7
the user is relying on the behavior specified by the pmix_info_t value. If the user relies on the8
behavior defined by the pmix_info_t then they must set the PMIX_INFO_REQD flag using the9
PMIX_INFO_REQUIRED macro.10

Advice to PMIx library implementers

The top 16-bits of the pmix_info_directives_t are reserved for internal use by PMIx11
library implementers - the PMIx standard will not specify their intent, leaving them for customized12
use by implementers. Implementers are advised to use the provided PMIX_INFO_IS_REQUIRED13
macro for testing this flag, and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to14
the caller if the required behavior is not supported.15

The following constants were introduced in version 2.0 (unless otherwise marked) and can be used16
to set a variable of the type pmix_info_directives_t .17

PMIX_INFO_REQD The behavior defined in the pmix_info_t array is required, and not18
optional. This is a bit-mask value.19

Advice to PMIx server hosts

Host environments are advised to use the provided PMIX_INFO_IS_REQUIRED macro for20
testing this flag and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to the caller21
if the required behavior is not supported.22

3.2.18 Info Directive support macros23

The following macros are provided to support the setting and testing of pmix_info_t directives.24

CHAPTER 3. DATA STRUCTURES AND TYPES 35

3.2.18.1 Mark an info structure as required1

Summary2

Set the PMIX_INFO_REQD flag in a pmix_info_t structure.3

PMIx v2.0 C
PMIX_INFO_REQUIRED(info);4

C
IN info5

Pointer to the pmix_info_t (pointer to pmix_info_t)6

This macro simplifies the setting of the PMIX_INFO_REQD flag in pmix_info_t structures.7

3.2.18.2 Test an info structure for required directive8

Summary9

Test the PMIX_INFO_REQD flag in a pmix_info_t structure, returning true if the flag is set.10

PMIx v2.0 C
PMIX_INFO_IS_REQUIRED(info);11

C
IN info12

Pointer to the pmix_info_t (pointer to pmix_info_t)13

This macro simplifies the testing of the required flag in pmix_info_t structures.14

3.2.19 Job Allocation Directives15

PMIx v2.0 The pmix_alloc_directive_t structure is a uint8_t type that defines the behavior of16
allocation requests. The following constants can be used to set a variable of the type17
pmix_alloc_directive_t . All definitions were introduced in version 2 of the standard18
unless otherwise marked.19

PMIX_ALLOC_NEW A new allocation is being requested. The resulting allocation will be20
disjoint (i.e., not connected in a job sense) from the requesting allocation.21

PMIX_ALLOC_EXTEND Extend the existing allocation, either in time or as additional22
resources.23

PMIX_ALLOC_RELEASE Release part of the existing allocation. Attributes in the24
accompanying pmix_info_t array may be used to specify permanent release of the25
identified resources, or “lending” of those resources for some period of time.26

PMIX_ALLOC_REAQUIRE Reacquire resources that were previously “lent” back to the27
scheduler.28

PMIX_ALLOC_EXTERNAL A value boundary above which implementers are free to define29
their own directive values.30

36 PMIx Standard – Version 2.0 – September 2018

3.2.20 Lookup Returned Data Structure1

The pmix_pdata_t structure is used by PMIx_Lookup to describe the data being accessed.2

PMIx v1.0 C
typedef struct pmix_pdata {3

pmix_proc_t proc;4
pmix_key_t key;5
pmix_value_t value;6

} pmix_pdata_t;7

C

3.2.21 Lookup data structure support macros8

The following macros are provided to support the pmix_pdata_t structure.9

3.2.21.1 Initialize the pmix_pdata_t structure10

Initialize the pmix_pdata_t fields11

PMIx v1.0 C
PMIX_PDATA_CONSTRUCT(m)12

C

IN m13
Pointer to the structure to be initialized (pointer to pmix_pdata_t)14

3.2.21.2 Destruct the pmix_pdata_t structure15

Destruct the pmix_pdata_t fields16

PMIx v1.0 C
PMIX_PDATA_DESTRUCT(m)17

C

IN m18
Pointer to the structure to be destructed (pointer to pmix_pdata_t)19

CHAPTER 3. DATA STRUCTURES AND TYPES 37

3.2.21.3 Create a pmix_pdata_t array1

Allocate and initialize an array of pmix_pdata_t structures2

PMIx v1.0 C
PMIX_PDATA_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_pdata_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

3.2.21.4 Free a pmix_pdata_t array9

Release an array of pmix_pdata_t structures10

PMIx v1.0 C
PMIX_PDATA_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_pdata_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

3.2.21.5 Load a lookup data structure16

Summary17

Load key, process identifier, and data value into a pmix_pdata_t structure.18

PMIx v1.0 C
PMIX_PDATA_LOAD(m, p, k, d, t);19

C

IN m20
Pointer to the pmix_pdata_t structure into which the key and data are to be loaded21
(pointer to pmix_pdata_t)22

IN p23
Pointer to the pmix_proc_t structure containing the identifier of the process being24
referenced (pointer to pmix_proc_t)25

IN k26
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length27
(handle)28

38 PMIx Standard – Version 2.0 – September 2018

IN d1
Pointer to the data value to be loaded (handle)2

IN t3
Type of the provided data value (pmix_data_type_t)4

This macro simplifies the loading of key, process identifier, and data into a pmix_proc_t by5
correctly assigning values to the structure’s fields.6

Advice to users

Key, process identifier, and data will all be copied into the pmix_pdata_t - thus, the source7
information can be modified or free’d without affecting the copied data once the macro has8
completed.9

3.2.21.6 Transfer a lookup data structure10

Summary11

Transfer key, process identifier, and data value between two pmix_pdata_t structures.12

PMIx v2.0 C
PMIX_PDATA_XFER(d, s);13

C

IN d14
Pointer to the destination pmix_pdata_t (pointer to pmix_pdata_t)15

IN s16
Pointer to the source pmix_pdata_t (pointer to pmix_pdata_t)17

This macro simplifies the transfer of key and data between two pmix_pdata_t structures.18

Advice to users

Key, process identifier, and data will all be copied into the destination pmix_pdata_t - thus, the19
source pmix_pdata_t may free’d without affecting the copied data once the macro has20
completed.21

CHAPTER 3. DATA STRUCTURES AND TYPES 39

3.2.22 Application Structure1

The pmix_app_t structure describes the application context for the PMIx_Spawn and2
PMIx_Spawn_nb operations.3

PMIx v1.0 C
typedef struct pmix_app {4

/** Executable */5
char *cmd;6
/** Argument set, NULL terminated */7
char **argv;8
/** Environment set, NULL terminated */9
char **env;10
/** Current working directory */11
char *cwd;12
/** Maximum processes with this profile */13
int maxprocs;14
/** Array of info keys describing this application*/15
pmix_info_t *info;16
/** Number of info keys in ’info’ array */17
size_t ninfo;18

} pmix_app_t;19

C

3.2.23 App structure support macros20

The following macros are provided to support the pmix_app_t structure.21

3.2.23.1 Initialize the pmix_app_t structure22

Initialize the pmix_app_t fields23

PMIx v1.0 C
PMIX_APP_CONSTRUCT(m)24

C

IN m25
Pointer to the structure to be initialized (pointer to pmix_app_t)26

40 PMIx Standard – Version 2.0 – September 2018

3.2.23.2 Destruct the pmix_app_t structure1

Destruct the pmix_app_t fields2

PMIx v1.0 C
PMIX_APP_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_app_t)5

3.2.23.3 Create a pmix_app_t array6

Allocate and initialize an array of pmix_app_t structures7

PMIx v1.0 C
PMIX_APP_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_app_t structures shall be stored (handle)10

IN n11
Number of structures to be allocated (size_t)12

3.2.23.4 Free a pmix_app_t array13

Release an array of pmix_app_t structures14

PMIx v1.0 C
PMIX_APP_FREE(m, n)15

C

IN m16
Pointer to the array of pmix_app_t structures (handle)17

IN n18
Number of structures in the array (size_t)19

CHAPTER 3. DATA STRUCTURES AND TYPES 41

3.2.24 Query Structure1

The pmix_query_t structure is used by PMIx_Query_info_nb to describe a single query2
operation.3

PMIx v2.0 C
typedef struct pmix_query {4

char **keys;5
pmix_info_t *qualifiers;6
size_t nqual;7

} pmix_query_t;8

C

3.2.25 Query structure support macros9

The following macros are provided to support the pmix_query_t structure.10

3.2.25.1 Initialize the pmix_query_t structure11

Initialize the pmix_query_t fields12

PMIx v2.0 C
PMIX_QUERY_CONSTRUCT(m)13

C

IN m14
Pointer to the structure to be initialized (pointer to pmix_query_t)15

3.2.25.2 Destruct the pmix_query_t structure16

Destruct the pmix_query_t fields17

PMIx v2.0 C
PMIX_QUERY_DESTRUCT(m)18

C

IN m19
Pointer to the structure to be destructed (pointer to pmix_query_t)20

42 PMIx Standard – Version 2.0 – September 2018

3.2.25.3 Create a pmix_query_t array1

Allocate and initialize an array of pmix_query_t structures2

PMIx v2.0 C
PMIX_QUERY_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_query_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

3.2.25.4 Free a pmix_query_t array9

Release an array of pmix_query_t structures10

PMIx v2.0 C
PMIX_QUERY_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_query_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

3.2.26 Modex Structure16

The pmix_modex_data_t structure describes the business card exchange (BCX) information.17

Note: This structure and its supporting macros have been deprecated and will be removed in future18
versions of the PMIx Standard.19

PMIx v1.0 C
typedef struct pmix_modex_data {20

pmix_nspace_t nspace;21
int rank;22
uint8_t *blob;23
size_t size;24

} pmix_modex_data_t;25

C

CHAPTER 3. DATA STRUCTURES AND TYPES 43

3.2.27 Modex data structure support macros1

The following macros are provided to support the pmix_modex_t structure.2

3.2.27.1 Initialize the pmix_modex_t structure3

Initialize the pmix_modex_t fields4

PMIx v1.0 C
PMIX_MODEX_CONSTRUCT(m)5

C

IN m6
Pointer to the structure to be initialized (pointer to pmix_modex_t)7

3.2.27.2 Destruct the pmix_modex_t structure8

Destruct the pmix_modex_t fields9

PMIx v1.0 C
PMIX_MODEX_DESTRUCT(m)10

C

IN m11
Pointer to the structure to be destructed (pointer to pmix_modex_t)12

3.2.27.3 Create a pmix_modex_t array13

Allocate and initialize an array of pmix_modex_t structures14

PMIx v1.0 C
PMIX_MODEX_CREATE(m, n)15

C

INOUT m16
Address where the pointer to the array of pmix_modex_t structures shall be stored17
(handle)18

IN n19
Number of structures to be allocated (size_t)20

44 PMIx Standard – Version 2.0 – September 2018

3.2.27.4 Free a pmix_modex_t array1

Release an array of pmix_modex_t structures2

PMIx v1.0 C
PMIX_MODEX_FREE(m, n)3

C
IN m4

Pointer to the array of pmix_modex_t structures (handle)5
IN n6

Number of structures in the array (size_t)7

3.3 Data Packing/Unpacking Types and Structures8

This section defines types and structures used to pack and unpack data passed through the PMIx9
API.10

3.3.1 Byte Object Type11

The pmix_byte_object_t structure describes a raw byte sequence.12

PMIx v1.0 C
typedef struct pmix_byte_object {13

char *bytes;14
size_t size;15

} pmix_byte_object_t;16

C

3.3.2 Byte object support macros17

The following macros support the pmix_byte_object_t structure.18

3.3.2.1 Initialize the pmix_byte_object_t structure19

Initialize the pmix_byte_object_t fields20

PMIx v2.0 C
PMIX_BYTE_OBJECT_CONSTRUCT(m)21

C
IN m22

Pointer to the structure to be initialized (pointer to pmix_byte_object_t)23

CHAPTER 3. DATA STRUCTURES AND TYPES 45

3.3.2.2 Destruct the pmix_byte_object_t structure1

Clear the pmix_byte_object_t fields2

PMIx v2.0 C
PMIX_BYTE_OBJECT_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_byte_object_t)5

3.3.2.3 Create a pmix_byte_object_t structure6

Allocate and intitialize an array of pmix_byte_object_t structures7

PMIx v2.0 C
PMIX_BYTE_OBJECT_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_byte_object_t structures shall be10
stored (handle)11

IN n12
Number of structures to be allocated (size_t)13

3.3.2.4 Free a pmix_byte_object_t array14

Release an array of pmix_byte_object_t structures15

PMIx v2.0 C
PMIX_BYTE_OBJECT_FREE(m, n)16

C

IN m17
Pointer to the array of pmix_byte_object_t structures (handle)18

IN n19
Number of structures in the array (size_t)20

46 PMIx Standard – Version 2.0 – September 2018

3.3.2.5 Load a pmix_byte_object_t structure1

Load values into a pmix_byte_object_t2

PMIx v2.0 C
PMIX_BYTE_OBJECT_LOAD(b, d, s)3

C

IN b4
Pointer to the structure to be loaded (pointer to pmix_byte_object_t)5

IN d6
Pointer to the data to be loaded (char*)7

IN s8
Number of bytes in the data array (size_t)9

3.3.3 Data Buffer Type10

The pmix_data_buffer_t structure describes a data buffer used for packing and unpacking.11

PMIx v2.0 C
typedef struct pmix_data_buffer {12

/** Start of my memory */13
char *base_ptr;14
/** Where the next data will be packed to (within the allocated15

memory starting at base_ptr) */16
char *pack_ptr;17
/** Where the next data will be unpacked from (within the18

allocated memory starting as base_ptr) */19
char *unpack_ptr;20
/** Number of bytes allocated (starting at base_ptr) */21
size_t bytes_allocated;22
/** Number of bytes used by the buffer (i.e., amount of data --23

including overhead -- packed in the buffer) */24
size_t bytes_used;25

} pmix_data_buffer_t;26

C

3.3.4 Data buffer support macros27

The following macros support the pmix_data_buffer_t structure.28

CHAPTER 3. DATA STRUCTURES AND TYPES 47

3.3.4.1 Initialize the pmix_data_buffer_t structure1

Initialize the pmix_data_buffer_t fields2

PMIx v2.0 C
PMIX_DATA_BUFFER_CONSTRUCT(m)3

C

IN m4
Pointer to the structure to be initialized (pointer to pmix_data_buffer_t)5

3.3.4.2 Destruct the pmix_data_buffer_t structure6

Clear the pmix_data_buffer_t fields7

PMIx v2.0 C
PMIX_DATA_BUFFER_DESTRUCT(m)8

C

IN m9
Pointer to the structure to be destructed (pointer to pmix_data_buffer_t)10

3.3.4.3 Create a pmix_data_buffer_t structure11

Allocate and intitialize a pmix_data_buffer_t structure12

PMIx v2.0 C
PMIX_DATA_BUFFER_CREATE(m)13

C

INOUT m14
Address where the pointer to the pmix_data_buffer_t structure shall be stored15
(handle)16

3.3.4.4 Free a pmix_data_buffer_t17

Release a pmix_data_buffer_t structure18

PMIx v2.0 C
PMIX_DATA_BUFFER_RELEASE(m)19

C

IN m20
Pointer to the pmix_data_buffer_t structure to be released (handle)21

48 PMIx Standard – Version 2.0 – September 2018

3.3.5 Data Array Structure1

The pmix_data_array_t structure defines an array data structure.2

PMIx v2.0 C
typedef struct pmix_data_array {3

pmix_data_type_t type;4
size_t size;5
void *array;6

} pmix_data_array_t;7

C

3.3.6 Generalized Data Types Used for Packing/Unpacking8

The pmix_data_type_t structure is a uint16_t type for identifying the data type for9
packing/unpacking purposes.10

Advice to PMIx library implementers

The following constants can be used to set a variable of the type pmix_data_type_t . Data11
types in the PMIx Standard are defined in terms of the C-programming language. Implementers12
wishing to support other languages should provide the equivalent definitions in a13
language-appropriate manner. Additionally, a PMIx implementation may choose to add additional14
types.15

3.3.6.1 PMIx v1 Data Types16

The following types were introduced in version 1 of the PMIx Standard.17

PMIX_UNDEF Undefined18
PMIX_BOOL Boolean (converted to/from native true/false) (bool)19
PMIX_BYTE A byte of data (uint8_t)20
PMIX_STRING NULL terminated string (char*)21
PMIX_SIZE Size size_t22
PMIX_PID Operating process identifier (PID) (pid_t)23
PMIX_INT Integer (int)24
PMIX_INT8 8-byte integer (int8_t)25
PMIX_INT16 16-byte integer (int16_t)26
PMIX_INT32 32-byte integer (int32_t)27
PMIX_INT64 64-byte integer (int64_t)28
PMIX_UINT Unsigned integer (unsigned int)29
PMIX_UINT8 Unsigned 8-byte integer (uint8_t)30

CHAPTER 3. DATA STRUCTURES AND TYPES 49

PMIX_UINT16 Unsigned 16-byte integer (uint16_t)1
PMIX_UINT32 Unsigned 32-byte integer (uint32_t)2
PMIX_UINT64 Unsigned 64-byte integer (uint64_t)3
PMIX_FLOAT Float (float)4
PMIX_DOUBLE Double (double)5
PMIX_TIMEVAL Time value (struct timeval)6
PMIX_TIME Time (time_t)7
PMIX_VALUE Value (pmix_value_t)8
PMIX_PROC Process (pmix_proc_t)9
PMIX_APP Application context10
PMIX_INFO Info object11
PMIX_PDATA Pointer to data12
PMIX_BUFFER Buffer13
PMIX_BYTE_OBJECT Byte object (pmix_byte_object_t)14
PMIX_KVAL Key/value pair15
PMIX_MODEX (Deprecated in PMIx 2.0) Modex16
PMIX_PERSIST Persistance (pmix_persistence_t)17
PMIX_INFO_ARRAY (Deprecated in PMIx 2.0) Info array18

3.3.6.2 PMIx v2 Data Types19

The following types were introduced in version 2 of the PMIx Standard.20

PMIX_STATUS Status (pmix_status_t)21
PMIX_POINTER Pointer (void*)22
PMIX_SCOPE Scope (pmix_scope_t)23
PMIX_DATA_RANGE Data range (pmix_data_range_t)24
PMIX_COMMAND Command25
PMIX_INFO_DIRECTIVES Info directives26
PMIX_DATA_TYPE Data type27
PMIX_PROC_STATE Process state (pmix_proc_state_t)28
PMIX_PROC_INFO Process info (pmix_proc_info_t)29
PMIX_DATA_ARRAY Data array (pmix_data_array_t)30
PMIX_PROC_RANK Process rank (pmix_rank_t)31
PMIX_QUERY Query32
PMIX_COMPRESSED_STRING Compressed string (with zlib)33
PMIX_ALLOC_DIRECTIVE Allocation directive (pmix_alloc_directive_t)34
PMIX_DATA_TYPE_MAX A boundary for implementers above which they can add their own35

data types.36

50 PMIx Standard – Version 2.0 – September 2018

3.4 Reserved attributes1

The PMIx standard defines a relatively small set of APIs and the caller may customize the behavior2
of the API by passing one or more attributes to that API. Additionally, attributes may be keys3
passed to PMIx_Get calls to access the specified values from the system.4

Each attribute is represented by a key string, and a type for the associated value. This section5
defines a set of reserved keys which are prefixed with pmix. to designate them as PMIx standard6
reserved keys. All definitions were introduced in version 1 of the standard unless otherwise marked.7

Applications or associated libraries (e.g., MPI) may choose to define additional attributes. The8
attributes defined in this section are of the system and job as opposed to the attributes that the9
application (or associated libraries) might choose to expose. Due to this extensibility the10
PMIx_Get API will return PMIX_ERR_NOT_FOUND if the provided key cannot be found.11

Attributes added in this version of the standard are shown in magenta to distinguish them from12
those defined in prior versions, which are shown in black. Deprecated attributes are shown in green13
and will be removed in future versions of the standard.14

PMIX_ATTR_UNDEF NULL (NULL)15
Constant representing an undefined attribute.16

3.4.1 Initialization attributes17

These attributes are defined to assist the caller with initialization.18

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)19
Pointer to libevent1 event_base to use in place of the internal progress thread.20

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)21
The host RM wants to declare itself as willing to accept tool connection requests.22

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)23
Allow connections from remote tools. Forces the PMIx server to not exclusively use24
loopback device.25

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)26
The host RM wants to declare itself as being the local system server for PMIx connection27
requests.28

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)29
Top-level temporary directory for all client processes connected to this server, and where the30
PMIx server will place its tool rendezvous point and contact information.31

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)32
Temporary directory for this system, and where a PMIx server that declares itself to be a33
system-level server will place a tool rendezvous point and contact information.34

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)35

1http://libevent.org/

CHAPTER 3. DATA STRUCTURES AND TYPES 51

http://libevent.org/

Registration is for the namespace only. Do not copy job data.1
PMIX_SERVER_ENABLE_MONITORING "pmix.srv.monitor" (bool)2

Enable PMIx internal monitoring by the PMIx server.3
PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)4

Name of the namespace to use for this PMIx server.5
PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)6

Rank of this PMIx server7

3.4.2 Tool-related attributes8

These attributes are defined to assist PMIx-enabled tools to connect with the PMIx server.9

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)10
Name of the namespace to use for this tool.11

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)12
Rank of this tool.13

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)14
PID of the target PMIx server for a tool.15

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)16
The requestor requires that a connection be made only to a local, system-level PMIx server.17

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)18
Preferentially, look for a system-level PMIx server first.19

PMIX_SERVER_URI "pmix.srvr.uri" (char*)20
uniform resource identifier (URI) of the PMIx server to be contacted.21

PMIX_SERVER_HOSTNAME "pmix.srvr.host" (char*)22
Host where target PMIx server is located.23

PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)24
Maximum number of times to try to connect to PMIx server.25

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)26
Time in seconds between connection attempts to a PMIx server.27

PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)28
The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.29

3.4.3 Identification attributes30

These attributes are defined to identify a process and it’s associated PMIx-enabled library.31

PMIX_USERID "pmix.euid" (uint32_t)32
Effective user id.33

PMIX_GRPID "pmix.egid" (uint32_t)34
Effective group id.35

PMIX_DSTPATH "pmix.dstpath" (char*)36
Path to shared memory data storage (dstore) files.37

52 PMIx Standard – Version 2.0 – September 2018

PMIX_VERSION_INFO "pmix.version" (char*)1
PMIx version of contractor.2

PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)3
Programming model being initialized (e.g., “MPI” or “OpenMP”)4

PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)5
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”)6

PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)7
Programming model version string (e.g., “2.1.1”)8

PMIX_THREADING_MODEL "pmix.threads" (char*)9
Threading model used (e.g., “pthreads”)10

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)11
The requesting process is a PMIx tool.12

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)13
The requesting process is a PMIx client.14

3.4.4 UNIX socket rendezvous socket attributes15

These attributes are used to describe a UNIX socket for rendezvous with the local RM.16

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)17
Disable legacy UNIX socket (usock) support18

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)19
POSIX mode_t (9 bits valid)20

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)21
Use only one rendezvous socket, letting priorities and/or environment parameters select the22
active transport.23

3.4.5 TCP connection attributes24

These attributes are used to describe a TCP socket for rendezvous with the local RM.25

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)26
If provided, directs that the TCP URI be reported and indicates the desired method of27
reporting: ’-’ for stdout, ’+’ for stderr, or filename.28

PMIX_TCP_URI "pmix.tcp.uri" (char*)29
The URI of the PMIx server to connect to, or a file name containing it in the form of30
file:<name of file containing it>.31

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)32
Comma-delimited list of devices and/or Classless Inter-Domain Routing (CIDR) notation to33
include when establishing the TCP connection.34

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)35
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the36
TCP connection.37

CHAPTER 3. DATA STRUCTURES AND TYPES 53

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)1
The IPv4 port to be used.2

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)3
The IPv6 port to be used.4

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)5
Set to true to disable IPv4 family of addresses.6

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)7
Set to true to disable IPv6 family of addresses.8

3.4.6 Global Data Storage (GDS) attributes9

These attributes are used to define the behavior of the GDS used to manage key/value pairs.10

PMIX_GDS_MODULE "pmix.gds.mod" (char*)11
Comma-delimited string of desired modules.12

3.4.7 General process-level attributes13

These attributes are used to define process attributes.14

PMIX_CPUSET "pmix.cpuset" (char*)15
hwloc2 bitmap to be applied to the process upon launch.16

PMIX_CREDENTIAL "pmix.cred" (char*)17
Security credential assigned to the process.18

PMIX_SPAWNED "pmix.spawned" (bool)19
true if this process resulted from a call to PMIx_Spawn .20

PMIX_ARCH "pmix.arch" (uint32_t)21
Architecture flag.22

3.4.8 Scratch directory attributes23

These attributes are used to define an application scratch directory.24

PMIX_TMPDIR "pmix.tmpdir" (char*)25
Full path to the top-level temporary directory assigned to the session.26

PMIX_NSDIR "pmix.nsdir" (char*)27
Full path to the temporary directory assigned to the namespace, under PMIX_TMPDIR .28

PMIX_PROCDIR "pmix.pdir" (char*)29
Full path to the subdirectory under PMIX_NSDIR assigned to the process.30

PMIX_TDIR_RMCLEAN "pmix.tdir.rmclean" (bool)31
Resource Manager will clean session directories32

2https://www.open-mpi.org/projects/hwloc/

54 PMIx Standard – Version 2.0 – September 2018

https://www.open-mpi.org/projects/hwloc/

3.4.9 Relative Rank Descriptive Attributes1

These attributes are used to describe information about relative ranks as assigned by the RM.2

PMIX_PROCID "pmix.procid" (pmix_proc_t)3
Process identifier4

PMIX_NSPACE "pmix.nspace" (char*)5
Namespace of the job.6

PMIX_JOBID "pmix.jobid" (char*)7
Job identifier assigned by the scheduler.8

PMIX_APPNUM "pmix.appnum" (uint32_t)9
Application number within the job.10

PMIX_RANK "pmix.rank" (pmix_rank_t)11
Process rank within the job.12

PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)13
Process rank spanning across all jobs in this session.14

PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)15
Process rank within this application.16

PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)17
Starting global rank of this job.18

PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)19
Local rank on this node within this job.20

PMIX_NODE_RANK "pmix.nrank" (uint16_t)21
Process rank on this node spanning all jobs.22

PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)23
Lowest rank on this node within this job.24

PMIX_APPLDR "pmix.aldr" (pmix_rank_t)25
Lowest rank in this application within this job.26

PMIX_PROC_PID "pmix.ppid" (pid_t)27
PID of specified process.28

PMIX_SESSION_ID "pmix.session.id" (uint32_t)29
Session identifier.30

PMIX_NODE_LIST "pmix.nlist" (char*)31
Comma-delimited list of nodes running processes for the specified namespace.32

PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)33
Comma-delimited list of all nodes in this allocation regardless of whether or not they34
currently host processes.35

PMIX_HOSTNAME "pmix.hname" (char*)36
Name of the host where the specified process is running.37

PMIX_NODEID "pmix.nodeid" (uint32_t)38
Node identifier where the specified process is located, expressed as the node’s index39
(beginning at zero) in an array of nodes comprising the users allocation40

PMIX_LOCAL_PEERS "pmix.lpeers" (char*)41

CHAPTER 3. DATA STRUCTURES AND TYPES 55

Comma-delimited list of ranks on this node within the specified namespace.1
PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)2

Array of pmix_proc_t of processes on the specified node.3
PMIX_LOCAL_CPUSETS "pmix.lcpus" (char*)4

Colon-delimited cpusets of local peers within the specified namespace.5
PMIX_PROC_URI "pmix.puri" (char*)6

URI containing contact information for a given process.7
PMIX_LOCALITY "pmix.loc" (uint16_t)8

Relative locality of two processes.9
PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)10

Process identifier of the parent process of the calling process.11

3.4.10 Size information attributes12

These attributes are used to describe the size of various dimensions of the PMIx universe.13

PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)14
Number of processes in this namespace.15

PMIX_JOB_SIZE "pmix.job.size" (uint32_t)16
Number of processes in this job.17

PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)18
Number of applications in this job.19

PMIX_APP_SIZE "pmix.app.size" (uint32_t)20
Number of processes in this application.21

PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)22
Number of processes in this job on this node.23

PMIX_NODE_SIZE "pmix.node.size" (uint32_t)24
Number of processes across all jobs on this node.25

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)26
Maximum number of processes for this job.27

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)28
Number of nodes in this namespace.29

3.4.11 Memory information attributes30

These attributes are used to describe memory available and used in the system.31

PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)32
Total available physical memory on this node.33

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)34
Megabytes of memory currently used by the RM daemon.35

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)36
Average Megabytes of memory used by client processes.37

56 PMIx Standard – Version 2.0 – September 2018

3.4.12 Topology information attributes1

These attributes are used to describe topology information in the PMIx universe.2

PMIX_NET_TOPO "pmix.ntopo" (char*)3
eXtensible Markup Language (XML) representation of the network topology.4

PMIX_LOCAL_TOPO "pmix.ltopo" (char*)5
XML representation of local node topology.6

PMIX_NODE_LIST "pmix.nlist" (char*)7
Comma-delimited list of nodes running processes for this job.8

PMIX_TOPOLOGY "pmix.topo" (hwloc_topology_t)9
Pointer to the PMIx client’s internal hwloc topology object.10

PMIX_TOPOLOGY_SIGNATURE "pmix.toposig" (char*)11
Topology signature string.12

PMIX_LOCALITY_STRING "pmix.locstr" (char*)13
String describing a process’s bound location. The string is of the form:14
NM%s:SK%s:L3%s:L2%s:L1%s:CR%s:HT%s15
Where the %s is replaced with an integer index or inclusive range for hwloc. NM identifies16
the numa node(s). SK identifies the socket(s). L3 identifies the L3 cache(s). L2 identifies the17
L2 cache(s). L1 identifies the L1 cache(s). CR identifies the cores(s). HT identifies the18
hardware thread(s). If your architecture does not have the specified hardware designation19
then it can be omitted from the signature.20
For example: NM0:SK0:L30-4:L20-4:L10-4:CR0-4:HT0-39.21
This means numa node 0, socket 0, L3 caches 0,1,2,3,4, L2 caches 0-4, L1 caches22
0-4, cores 0,1,2,3,4, and hardware threads 0-39.23

PMIX_HWLOC_SHMEM_ADDR "pmix.hwlocaddr" (size_t)24
Address of the hwloc shared memory segment.25

PMIX_HWLOC_SHMEM_SIZE "pmix.hwlocsize" (size_t)26
Size of the hwloc shared memory segment.27

PMIX_HWLOC_SHMEM_FILE "pmix.hwlocfile" (char*)28
Path to the hwloc shared memory file.29

PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)30
XML representation of local topology using hwloc’s v1.x format.31

PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)32
XML representation of local topology using hwloc’s v2.x format.33

3.4.13 Request-related attributes34

These attributes are used to influence the behavior of various PMIx operations.35

PMIX_COLLECT_DATA "pmix.collect" (bool)36
Collect data and return it at the end of the operation.37

PMIX_TIMEOUT "pmix.timeout" (int)38

CHAPTER 3. DATA STRUCTURES AND TYPES 57

Time in seconds before the specified operation should time out (0 indicating infinite) in1
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent2
the target process from ever exposing its data.3

PMIX_IMMEDIATE "pmix.immediate" (bool)4
Specified operation should immediately return an error from the PMIx server if the requested5
data cannot be found - do not request it from the host RM.6

PMIX_WAIT "pmix.wait" (int)7
Caller requests that the PMIx server wait until at least the specified number of values are8
found (0 indicates all and is the default).9

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)10
Comma-delimited list of algorithms to use for the collective operation.11

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)12
If true, indicates that the requested choice of algorithm is mandatory.13

PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)14
Notify the parent process upon termination of child job.15

PMIX_RANGE "pmix.range" (pmix_data_range_t)16
Value for calls to publish/lookup/unpublish or for monitoring event notifications.17

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)18
Value for calls to PMIx_Publish .19

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)20
Scope of the data to be found in a PMIx_Get call.21

PMIX_OPTIONAL "pmix.optional" (bool)22
Look only in the client’s local data store for the requested value - do not request data from23
the PMIx server if not found.24

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)25
Execute a blocking fence operation before executing the specified operation. By default,26
PMIx_Finalize does not include an internal barrier operation. This attribute directs27
PMIx_Finalize to execute a barrier as part of the finalize operation.28

PMIX_JOB_TERM_STATUS "pmix.job.term.status" (pmix_status_t)29
Status to be returned upon job termination.30

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)31
Process state32

3.4.14 Server-to-PMIx library attributes33

Attributes used by the host environment to pass data to its PMIx server library. The data will then34
be parsed and provided to the local PMIx clients.35

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)36
Registration is for this namespace only, do not copy job data.37

PMIX_PROC_DATA "pmix.pdata" (pmix_data_array_t)38
Array of process data. Starts with rank, then contains more data.39

PMIX_NODE_MAP "pmix.nmap" (char*)40

58 PMIx Standard – Version 2.0 – September 2018

Regular expression of nodes containing processes for this job.1
PMIX_PROC_MAP "pmix.pmap" (char*)2

Regular expression describing processes on each node within this job.3
PMIX_ANL_MAP "pmix.anlmap" (char*)4

Process mapping in Argonne National Laboratory’s PMI-1/PMI-2 notation.5
PMIX_APP_MAP_TYPE "pmix.apmap.type" (char*)6

Type of mapping used to layout the application (e.g., cyclic).7
PMIX_APP_MAP_REGEX "pmix.apmap.regex" (char*)8

Regular expression describing the result of the process mapping.9

3.4.15 Srever-to-Client attributes10

Attributes used internally to communicate data from the PMIx server to the PMIx client.11

PMIX_PROC_BLOB "pmix.pblob" (pmix_byte_object_t)12
Packed blob of process data.13

PMIX_MAP_BLOB "pmix.mblob" (pmix_byte_object_t)14
Packed blob of process location.15

3.4.16 Event handler registration and notification attributes16

Attributes to support event registration and notification.17

Advice to users

The event handler subsystem defined in the PMIx ad hoc version 1 Standard was completely18
overhauled in version 2 to resolve design flaws. Deprecated attributes shown below were therefore19
removed in the version 2 Standard.20

PMIX_ERROR_NAME "pmix.errname" (pmix_status_t)21
Specific error to be notified22

PMIX_ERROR_GROUP_COMM "pmix.errgroup.comm" (bool)23
Set true to get comm errors notification24

PMIX_ERROR_GROUP_ABORT "pmix.errgroup.abort" (bool)25
Set true to get abort errors notification26

PMIX_ERROR_GROUP_MIGRATE "pmix.errgroup.migrate" (bool)27
Set true to get migrate errors notification28

PMIX_ERROR_GROUP_RESOURCE "pmix.errgroup.resource" (bool)29
Set true to get resource errors notification30

PMIX_ERROR_GROUP_SPAWN "pmix.errgroup.spawn" (bool)31
Set true to get spawn errors notification32

PMIX_ERROR_GROUP_NODE "pmix.errgroup.node" (bool)33

CHAPTER 3. DATA STRUCTURES AND TYPES 59

Set true to get node status notification1
PMIX_ERROR_GROUP_LOCAL "pmix.errgroup.local" (bool)2

Set true to get local errors notification3
PMIX_ERROR_GROUP_GENERAL "pmix.errgroup.gen" (bool)4

Set true to get notified of generic errors5
PMIX_ERROR_HANDLER_ID "pmix.errhandler.id" (int)6

Errhandler reference id of notification being reported7
PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)8

String name identifying this handler.9
PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)10

Invoke this event handler before any other handlers.11
PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)12

Invoke this event handler after all other handlers have been called.13
PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)14

Invoke this event handler before any other handlers in this category.15
PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)16

Invoke this event handler after all other handlers in this category have been called.17
PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)18

Put this event handler immediately before the one specified in the (char*) value.19
PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)20

Put this event handler immediately after the one specified in the (char*) value.21
PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)22

Prepend this handler to the precedence list within its category.23
PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)24

Append this handler to the precedence list within its category.25
PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)26

Array of pmix_proc_t defining range of event notification.27
PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)28

The single process that was affected.29
PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)30

Array of pmix_proc_t defining affected processes.31
PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)32

Event is not to be delivered to default event handlers.33
PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)34

Object to be returned whenever the registered callback function cbfunc is invoked. The35
object will only be returned to the process that registered it.36

PMIX_EVENT_DO_NOT_CACHE "pmix.evnocache" (bool)37
Instruct the PMIx server not to cache the event.38

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)39
Do not generate an event when this job normally terminates.40

60 PMIx Standard – Version 2.0 – September 2018

3.4.17 Fault tolerance attributes1

Attributes to support fault tolerance behaviors.2

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)3
The RM intends to terminate this session.4

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)5
The RM intends to terminate this job.6

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)7
The RM intends to terminate all processes on this node.8

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)9
The RM intends to terminate just this process.10

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)11
The time in seconds before the RM will execute error response.12

PMIX_EVENT_NO_TERMINATION "pmix.evnoterm" (bool)13
Indicates that the handler has satisfactorily handled the event and believes termination of the14
application is not required.15

PMIX_EVENT_WANT_TERMINATION "pmix.evterm" (bool)16
Indicates that the handler has determined that the application should be terminated17

3.4.18 Spawn attributes18

Attributes used to describe PMIx_Spawn behavior.19

PMIX_PERSONALITY "pmix.pers" (char*)20
Name of personality to use.21

PMIX_HOST "pmix.host" (char*)22
Comma-delimited list of hosts to use for spawned processes.23

PMIX_HOSTFILE "pmix.hostfile" (char*)24
Hostfile to use for spawned processes.25

PMIX_ADD_HOST "pmix.addhost" (char*)26
Comma-delimited list of hosts to add to the allocation.27

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)28
Hostfile listing hosts to add to existing allocation.29

PMIX_PREFIX "pmix.prefix" (char*)30
Prefix to use for starting spawned processes.31

PMIX_WDIR "pmix.wdir" (char*)32
Working directory for spawned processes.33

PMIX_MAPPER "pmix.mapper" (char*)34
Mapping mechanism to use for placing spawned processes.35

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)36
Display process mapping upon spawn.37

PMIX_PPR "pmix.ppr" (char*)38

CHAPTER 3. DATA STRUCTURES AND TYPES 61

Number of processes to spawn on each identified resource.1
PMIX_MAPBY "pmix.mapby" (char*)2

Process mapping policy.3
PMIX_RANKBY "pmix.rankby" (char*)4

Process ranking policy.5
PMIX_BINDTO "pmix.bindto" (char*)6

Process binding policy.7
PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)8

Preload binaries onto nodes.9
PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)10

Comma-delimited list of files to pre-position on nodes.11
PMIX_NON_PMI "pmix.nonpmi" (bool)12

Spawned processes will not call PMIx_Init .13
PMIX_STDIN_TGT "pmix.stdin" (uint32_t)14

Spawned process rank that is to receive stdin.15
PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)16

Forward this process’s stdin to the designated process.17
PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)18

Forward stdout from spawned processes to this process.19
PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)20

Forward stderr from spawned processes to this process.21
PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)22

Spawned application consists of debugger daemons.23
PMIX_COSPAWN_APP "pmix.cospawn" (bool)24

Designated application is to be spawned as a disconnected job. Meaning that it is not part of25
the “comm_world” of the parent process.26

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)27
Set the application’s current working directory to the session working directory assigned by28
the RM.29

PMIX_TAG_OUTPUT "pmix.tagout" (bool)30
Tag application output with the identity of the source process.31

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)32
Timestamp output from applications.33

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)34
Merge stdout and stderr streams from application processes.35

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)36
Output application output to the specified file.37

PMIX_INDEX_ARGV "pmix.indxargv" (bool)38
Mark the argv with the rank of the process.39

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)40
Number of cpus to assign to each rank.41

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)42
Do not place processes on the head node.43

62 PMIx Standard – Version 2.0 – September 2018

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)1
Do not oversubscribe the cpus.2

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)3
Report bindings of the individual processes.4

PMIX_CPU_LIST "pmix.cpulist" (char*)5
List of cpus to use for this job.6

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)7
Application supports recoverable operations.8

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)9
Application is continuous, all failed processes should be immediately restarted.10

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)11
Maximum number of times to restart a job.12

3.4.19 Query attributes13

Attributes used to describe PMIx_Query_info_nb behavior.14

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)15
Request a comma-delimited list of active namespaces.16

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)17
Status of a specified, currently executing job.18

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)19
Request a comma-delimited list of scheduler queues.20

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (TBD)21
Status of a specified scheduler queue.22

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)23
Input namespace of the job whose information is being requested returns (24
pmix_data_array_t) an array of pmix_proc_info_t .25

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)26
Input namespace of the job whose information is being requested returns (27
pmix_data_array_t) an array of pmix_proc_info_t for processes in job on same28
node.29

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)30
Return operations the PMIx tool is authorized to perform.31

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)32
Return a comma-delimited list of supported spawn attributes.33

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)34
Return a comma-delimited list of supported debug attributes.35

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)36
Return information on memory usage for the processes indicated in the qualifiers.37

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)38
Constrain the query to local information only.39

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)40

CHAPTER 3. DATA STRUCTURES AND TYPES 63

Report average values.1
PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)2

Report minimum and maximum values.3
PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)4

String identifier of the allocation whose status is being requested.5
PMIX_TIME_REMAINING "pmix.time.remaining" (char*)6

Query number of seconds (uint32_t) remaining in allocation for the specified namespace.7

3.4.20 Log attributes8

Attributes used to describe PMIx_Log_nb behavior.9

PMIX_LOG_STDERR "pmix.log.stderr" (char*)10
Log string to stderr.11

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)12
Log string to stdout.13

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)14
Log data to syslog. Defaults to ERROR priority.15

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)16
Message blob to be sent somewhere.17

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)18
Log via email based on pmix_info_t containing directives.19

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)20
Comma-delimited list of email addresses that are to receive the message.21

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)22
Subject line for email.23

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)24
Message to be included in email.25

3.4.21 Debugger attributes26

Attributes used to assist debuggers.27

PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)28
Job is being spawned under debugger. The processes are instructed to pause on start.29

PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)30
Instruct job to stop processes during PMIx_Init .31

PMIX_DEBUG_WAIT_FOR_NOTIFY "pmix.dbg.notify" (bool)32
Block at desired point until receiving debugger release notification.33

PMIX_DEBUG_JOB "pmix.dbg.job" (char*)34
Namespace of the job to be debugged.35

PMIX_DEBUG_WAITING_FOR_NOTIFY "pmix.dbg.waiting" (bool)36
Job to be debugged is waiting for a release.37

64 PMIx Standard – Version 2.0 – September 2018

3.4.22 Resource manager attributes1

Attributes used to describe the RM.2

PMIX_RM_NAME "pmix.rm.name" (char*)3
String name of the RM.4

PMIX_RM_VERSION "pmix.rm.version" (char*)5
RM version string.6

3.4.23 Environment variable attributes7

Attributes used to adjust environment variables.8

PMIX_SET_ENVAR "pmix.set.envar" (char*)9
String “key=value” value shall be put into the environment.10

PMIX_UNSET_ENVAR "pmix.unset.envar" (char*)11
Unset the environment variable specified in the string.12

3.4.24 Job Allocation attributes13

Attributes used to describe the job allocation.14

PMIX_ALLOC_ID "pmix.alloc.id" (char*)15
Provide a string identifier for this allocation request which can later be used to query status16
of the request.17

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)18
The number of nodes.19

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)20
Regular expression of the specific nodes.21

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)22
Number of cpus.23

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)24
Regular expression of the number of cpus for each node.25

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)26
Regular expression of the specific cpus indicating the cpus involved.27

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)28
Number of Megabytes.29

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)30
Array of pmix_info_t describing requested network resources. If not given as part of an31
pmix_info_t struct that identifies the involved nodes, then the description will be32
applied across all nodes in the requestor’s allocation.33

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)34
Name of the network.35

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)36

CHAPTER 3. DATA STRUCTURES AND TYPES 65

Mbits/sec.1
PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)2

Quality of service level.3
PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)4

Time in seconds.5

3.4.25 Job control attributes6

Attributes used to request control operations on an executing application.7

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)8
Provide a string identifier for this request.9

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)10
Pause the specified processes.11

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)12
Resume (“un-pause”) the specified processes.13

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)14
Cancel the specified request (NULL implies cancel all requests from this requestor).15

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)16
Forcibly terminate the specified processes and cleanup.17

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)18
Restart the specified processes using the given checkpoint ID.19

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)20
Checkpoint the specified processes and assign the given ID to it.21

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)22
Use event notification to trigger a process checkpoint.23

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)24
Use the given signal to trigger a process checkpoint.25

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)26
Time in seconds to wait for a checkpoint to complete.27

PMIX_JOB_CTRL_CHECKPOINT_METHOD28
"pmix.jctrl.ckmethod" (pmix_data_array_t)29

Array of pmix_info_t declaring each method and value supported by this application.30
PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)31

Send given signal to specified processes.32
PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)33

Regular expression identifying nodes that are to be provisioned.34
PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)35

Name of the image that is to be provisioned.36
PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)37

Indicate that the job can be pre-empted.38
PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)39

Politely terminate the specified processes.40

66 PMIx Standard – Version 2.0 – September 2018

3.4.26 Monitoring attributes1

Attributes used to control monitoring of an executing application.2

PMIX_MONITOR_ID "pmix.monitor.id" (char*)3
Provide a string identifier for this request.4

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)5
Identifier to be canceled (NULL means cancel all monitoring for this process).6

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)7
The application desires to control the response to a monitoring event.8

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)9
Register to have the PMIx server monitor the requestor for heartbeats.10

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)11
Send heartbeat to local PMIx server.12

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)13
Time in seconds before declaring heartbeat missed.14

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)15
Number of heartbeats that can be missed before generating the event.16

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)17
Register to monitor file for signs of life.18

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)19
Monitor size of given file is growing to determine if the application is running.20

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)21
Monitor time since last access of given file to determine if the application is running.22

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)23
Monitor time since last modified of given file to determine if the application is running.24

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)25
Time in seconds between checking the file.26

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)27
Number of file checks that can be missed before generating the event.28

3.5 Callback Functions29

PMIx provides blocking and nonblocking versions of most APIs. In the nonblocking versions, a30
callback is activated upon completion of the the operation. This section describes many of those31
callbacks.32

CHAPTER 3. DATA STRUCTURES AND TYPES 67

3.5.1 Release Callback Function1

Summary2

The pmix_release_cbfunc_t is used by the pmix_modex_cbfunc_t and3
pmix_info_cbfunc_t operations to indicate that the callback data may be reclaimed/freed by4
the caller.5

Format6

PMIx v1.0 C
typedef void (*pmix_release_cbfunc_t)7

(void *cbdata)8

C

INOUT cbdata9
Callback data passed to original API call (memory reference)10

Description11

Since the data is “owned” by the host server, provide a callback function to notify the host server12
that we are done with the data so it can be released.13

3.5.2 Modex Callback Function14

Summary15

The pmix_modex_cbfunc_t is used by the pmix_server_fencenb_fn_t and16
pmix_server_dmodex_req_fn_t PMIx server operations to return modex BCX data.17

PMIx v1.0 C
typedef void (*pmix_modex_cbfunc_t)18

(pmix_status_t status,19
const char *data, size_t ndata,20
void *cbdata,21
pmix_release_cbfunc_t release_fn,22
void *release_cbdata)23

C

IN status24
Status associated with the operation (handle)25

IN data26
Data to be passed (pointer)27

68 PMIx Standard – Version 2.0 – September 2018

IN ndata1
size of the data (size_t)2

IN cbdata3
Callback data passed to original API call (memory reference)4

IN release_fn5
Callback for releasing data (function pointer)6

IN release_cbdata7
Pointer to be passed to release_fn (memory reference)8

Description9

A callback function that is solely used by PMIx servers, and not clients, to return modex BCX data10
in response to “fence” and “get” operations. The returned blob contains the data collected from11
each server participating in the operation.12

3.5.3 Spawn Callback Function13

Summary14

The pmix_spawn_cbfunc_t is used on the PMIx client side by PMIx_Spawn_nb and on15
the PMIx server side by pmix_server_spawn_fn_t .16

PMIx v1.0 C
typedef void (*pmix_spawn_cbfunc_t)17

(pmix_status_t status,18
pmix_nspace_t nspace, void *cbdata);19

C

IN status20
Status associated with the operation (handle)21

IN nspace22
Namespace string (pmix_nspace_t)23

IN cbdata24
Callback data passed to original API call (memory reference)25

Description26

The callback will be executed upon launch of the specified applications in PMIx_Spawn_nb , or27
upon failure to launch any of them.28

The status of the callback will indicate whether or not the spawn succeeded. The nspace of the29
spawned processes will be returned, along with any provided callback data. Note that the returned30
nspace value will not be protected by the PRI upon return from the callback function, so the31
receiver must copy it if it needs to be retained.32

CHAPTER 3. DATA STRUCTURES AND TYPES 69

3.5.4 Op Callback Function1

Summary2

The pmix_op_cbfunc_t is used by operations that simply return a status.3

PMIx v1.0 C
typedef void (*pmix_op_cbfunc_t)4

(pmix_status_t status, void *cbdata);5

C

IN status6
Status associated with the operation (handle)7

IN cbdata8
Callback data passed to original API call (memory reference)9

Description10

Used by a wide range of PMIx API’s including PMIx_Fence_nb ,11
pmix_server_client_connected_fn_t , PMIx_server_register_nspace . This12
callback function is used to return a status to an often nonblocking operation.13

3.5.5 Lookup Callback Function14

Summary15

The pmix_lookup_cbfunc_t is used by PMIx_Lookup_nb to return data.16

PMIx v1.0 C
typedef void (*pmix_lookup_cbfunc_t)17

(pmix_status_t status,18
pmix_pdata_t data[], size_t ndata,19
void *cbdata);20

C

IN status21
Status associated with the operation (handle)22

IN data23
Array of data returned (pmix_pdata_t)24

IN ndata25
Number of elements in the data array (size_t)26

IN cbdata27
Callback data passed to original API call (memory reference)28

70 PMIx Standard – Version 2.0 – September 2018

Description1

A callback function for calls to PMIx_Lookup_nb The function will be called upon completion2
of the command with the status indicating the success or failure of the request. Any retrieved data3
will be returned in an array of pmix_pdata_t structs. The namespace and rank of the process4
that provided each data element is also returned.5

Note that these structures will be released upon return from the callback function, so the receiver6
must copy/protect the data prior to returning if it needs to be retained.7

3.5.6 Value Callback Function8

Summary9

The pmix_value_cbfunc_t is used by PMIx_Get_nb to return data.10

PMIx v1.0 C
typedef void (*pmix_value_cbfunc_t)11

(pmix_status_t status,12
pmix_value_t *kv, void *cbdata);13

C

IN status14
Status associated with the operation (handle)15

IN kv16
Key/value pair representing the data (pmix_value_t)17

IN cbdata18
Callback data passed to original API call (memory reference)19

Description20

A callback function for calls to PMIx_Get_nb . The status indicates if the requested data was21
found or not. A pointer to the pmix_value_t structure containing the found data is returned.22
The pointer will be NULL if the requested data was not found.23

3.5.7 Info Callback Function24

Summary25

The pmix_info_cbfunc_t is a general information callback used by various APIs.26

PMIx v2.0

CHAPTER 3. DATA STRUCTURES AND TYPES 71

C
typedef void (*pmix_info_cbfunc_t)1

(pmix_status_t status,2
pmix_info_t info[], size_t ninfo,3
void *cbdata,4
pmix_release_cbfunc_t release_fn,5
void *release_cbdata);6

C

IN status7
Status associated with the operation (pmix_status_t)8

IN info9
Array of pmix_info_t returned by the operation (pointer)10

IN ninfo11
Number of elements in the info array (size_t)12

IN cbdata13
Callback data passed to original API call (memory reference)14

IN release_fn15
Function to be called when done with the info data (function pointer)16

IN release_cbdata17
Callback data to be passed to release_fn (memory reference)18

Description19

The status indicates if requested data was found or not. An array of pmix_info_t will contain20
the key/value pairs.21

3.5.8 Event Handler Registration Callback Function22

The pmix_evhdlr_reg_cbfunc_t callback function.23

Advice to users

The PMIx ad hoc v1.0 Standard defined an error handler registration callback function with a24
compatible signature, but with a different type definition function name25
(pmix_errhandler_reg_cbfunc_t). It was removed from the v2.0 Standard and is not included in this26
document to avoid confusion.27

PMIx v2.0

72 PMIx Standard – Version 2.0 – September 2018

C
typedef void (*pmix_evhdlr_reg_cbfunc_t)1

(pmix_status_t status,2
size_t evhdlr_ref,3
void *cbdata)4

C

IN status5
Status indicates if the request was successful or not (pmix_status_t)6

IN evhdlr_ref7
Reference assigned to the event handler by PMIx — this reference * must be used to8
deregister the err handler (size_t)9

IN cbdata10
Callback data passed to original API call (memory reference)11

Description12

Define a callback function for calls to PMIx_Register_event_handler13

3.5.9 Notification Handler Completion Callback Function14

Summary15

The pmix_event_notification_cbfunc_fn_t is called by event handlers to indicate16
completion of their operations.17

PMIx v2.0 C
typedef void (*pmix_event_notification_cbfunc_fn_t)18

(pmix_status_t status,19
pmix_info_t *results, size_t nresults,20
pmix_op_cbfunc_t cbfunc, void *thiscbdata,21
void *notification_cbdata);22

C

IN status23
Status returned by the event handler’s operation (pmix_status_t)24

IN results25
Results from this event handler’s operation on the event (pmix_info_t)26

IN nresults27
Number of elements in the results array (size_t)28

IN cbfunc29
pmix_op_cbfunc_t function to be executed when PMIx completes processing the30
callback (function reference)31

CHAPTER 3. DATA STRUCTURES AND TYPES 73

IN thiscbdata1
Callback data that was passed in to the handler (memory reference)2

IN cbdata3
Callback data to be returned when PMIx executes cbfunc (memory reference)4

Description5

Define a callback by which an event handler can notify the PMIx library that it has completed its6
response to the notification. The handler is required to execute this callback so the library can7
determine if additional handlers need to be called. The handler shall return8
PMIX_ERR_EVENT_COMPLETE if no further action is required. The return status of each event9
handler and any returned pmix_info_t structures will be added to the results array of10
pmix_info_t passed to any subsequent event handlers to help guide their operation.11

If non-NULL, the provided callback function will be called to allow the event handler to release the12
provided info array and execute any other required cleanup operations.13

3.5.10 Notification Function14

Summary15

The pmix_notification_fn_t is called by PMIx to deliver notification of an event.16

Advice to users

The PMIx ad hoc v1.0 Standard defined an error notification function with an identical name, but17
different signature than the v2.0 Standard described below. The ad hoc v1.0 version was removed18
from the v2.0 Standard is not included in this document to avoid confusion.19

PMIx v2.0 C
typedef void (*pmix_notification_fn_t)20

(size_t evhdlr_registration_id,21
pmix_status_t status,22
const pmix_proc_t *source,23
pmix_info_t info[], size_t ninfo,24
pmix_info_t results[], size_t nresults,25
pmix_event_notification_cbfunc_fn_t cbfunc,26
void *cbdata);27

74 PMIx Standard – Version 2.0 – September 2018

C

IN evhdlr_registration_id1
Registration number of the handler being called (size_t)2

IN status3
Status associated with the operation (pmix_status_t)4

IN source5
Identifier of the process that generated the event (pmix_proc_t). If the source is the6
SMS, then the nspace will be empty and the rank will be PMIX_RANK_UNDEF7

IN info8
Information describing the event (pmix_info_t). This argument will be NULL if no9
additional information was provided by the event generator.10

IN ninfo11
Number of elements in the info array (size_t)12

IN results13
Aggregated results from prior event handlers servicing this event (pmix_info_t). This14
argument will be NULL if this is the first handler servicing the event, or if no prior handlers15
provided results.16

IN nresults17
Number of elements in the results array (size_t)18

IN cbfunc19
pmix_event_notification_cbfunc_fn_t callback function to be executed upon20
completion of the handler’s operation and prior to handler return (function reference).21

IN cbdata22
Callback data to be passed to cbfunc (memory reference)23

Description24

Note that different RMs may provide differing levels of support for event notification to application25
processes. Thus, the info array may be NULL or may contain detailed information of the event. It is26
the responsibility of the application to parse any provided info array for defined key-values if it so27
desires.28

Advice to users

Possible uses of the info array include:29

• for the host RM to alert the process as to planned actions, such as aborting the session, in30
response to the reported event31

• provide a timeout for alternative action to occur, such as for the application to request an32
alternate response to the event33

CHAPTER 3. DATA STRUCTURES AND TYPES 75

For example, the RM might alert the application to the failure of a node that resulted in termination1
of several processes, and indicate that the overall session will be aborted unless the application2
requests an alternative behavior in the next 5 seconds. The application then has time to respond3
with a checkpoint request, or a request to recover from the failure by obtaining replacement nodes4
and restarting from some earlier checkpoint.5

Support for these options is left to the discretion of the host RM. Info keys are included in the6
common definitions above but may be augmented by environment vendors.7

Advice to PMIx server hosts

On the server side, the notification function is used to inform the PMIx server library’s host of a8
detected event in the PMIx server library. Events generated by PMIx clients are communicated to9
the PMIx server library, but will be relayed to the host via the10
pmix_server_notify_event_fn_t function pointer, if provided.11

3.5.11 Server Setup Application Callback Function12

The PMIx_server_setup_application callback function.13

Summary14

Provide a function by which the resource manager can receive application-specific environmental15
variables and other setup data prior to launch of an application.16

76 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v2.0 C
typedef void (*pmix_setup_application_cbfunc_t)(2

pmix_status_t status,3
pmix_info_t info[], size_t ninfo,4
void *provided_cbdata,5
pmix_op_cbfunc_t cbfunc, void *cbdata)6

C

IN status7
returned status of the request (pmix_status_t)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN provided_cbdata13
Data originally passed to call to PMIx_server_setup_application (memory14
reference)15

IN cbfunc16
pmix_op_cbfunc_t function to be called when processing completed (function17
reference)18

IN cbdata19
Data to be passed to the cbfunc callback function (memory reference)20

Description21

Define a function to be called by the PMIx server library for return of application-specific setup22
data in response to a request from the host RM. The returned info array is owned by the PMIx23
server library and will be free’d when the provided cbfunc is called.24

3.5.12 Server Direct Modex Response Callback Function25

The PMIx_server_dmodex_request callback function.26

Summary27

Provide a function by which the local PMIx server library can return connection and other data28
posted by local application processes to the host resource manager.29

CHAPTER 3. DATA STRUCTURES AND TYPES 77

Format1

PMIx v1.0 C
typedef void (*pmix_dmodex_response_fn_t)(pmix_status_t status,2

char *data, size_t sz,3
void *cbdata);4

C

IN status5
Returned status of the request (pmix_status_t)6

IN data7
Pointer to a data "blob" containing the requested information (handle)8

IN sz9
Number of bytes in the data blob (integer)10

IN cbdata11
Data passed into the initial call to PMIx_server_dmodex_request (memory12
reference)13

Description14

Define a function to be called by the PMIx server library for return of information posted by a local15
application process (via PMIx_Put with subsequent PMIx_Commit) in response to a request16
from the host RM. The returned data blob is owned by the PMIx server library and will be free’d17
upon return from the function.18

3.5.13 pmix_connection_cbfunc_t19

Summary20

Callback function for incoming connection request from a local client21

Format22

PMIx v1.0 C
typedef void (*pmix_connection_cbfunc_t)(23

int incoming_sd, void *cbdata)24

C

IN incoming_sd25
(integer)26

IN cbdata27
(memory reference)28

78 PMIx Standard – Version 2.0 – September 2018

Description1

Callback function for incoming connection requests from local clients - only used by host2
environments that wish to directly handle socket connection requests.3

3.5.14 pmix_tool_connection_cbfunc_t4

Summary5

Callback function for incoming tool connections.6

Format7

PMIx v2.0 C
typedef void (*pmix_tool_connection_cbfunc_t)(8

pmix_status_t status,9
pmix_proc_t *proc, void *cbdata)10

C

IN status11
pmix_status_t value (handle)12

IN proc13
pmix_proc_t structure containing the identifier assigned to the tool (handle)14

IN cbdata15
Data to be passed (memory reference)16

Description17

Callback function for incoming tool connections. The host environment shall provide a18
namespace/rank identifier for the connecting tool.19

Advice to PMIx server hosts

It is assumed that rank=0 will be the normal assignment, but allow for the future possibility of a20
parallel set of tools connecting, and thus each process requiring a unique rank.21

3.5.15 Constant String Functions22

Provide a string representation for several types of values. Note that the provided string is statically23
defined and must NOT be free’d.24

CHAPTER 3. DATA STRUCTURES AND TYPES 79

Summary1

String representation of a pmix_status_t .2

PMIx v1.0 C
const char*3
PMIx_Error_string(pmix_status_t status);4

C

Summary5

String representation of a pmix_proc_state_t .6

PMIx v2.0 C
const char*7
PMIx_Proc_state_string(pmix_proc_state_t state);8

C

Summary9

String representation of a pmix_scope_t .10

PMIx v2.0 C
const char*11
PMIx_Scope_string(pmix_scope_t scope);12

C

Summary13

String representation of a pmix_persistence_t .14

PMIx v2.0 C
const char*15
PMIx_Persistence_string(pmix_persistence_t persist);16

C

Summary17

String representation of a pmix_data_range_t .18

PMIx v2.0 C
const char*19
PMIx_Data_range_string(pmix_data_range_t range);20

C

80 PMIx Standard – Version 2.0 – September 2018

Summary1

String representation of a pmix_info_directives_t .2

PMIx v2.0 C
const char*3
PMIx_Info_directives_string(pmix_info_directives_t directives);4

C

Summary5

String representation of a pmix_data_type_t .6

PMIx v2.0 C
const char*7
PMIx_Data_type_string(pmix_data_type_t type);8

C

Summary9

String representation of a pmix_alloc_directive_t .10

PMIx v2.0 C
const char*11
PMIx_Alloc_directive_string(pmix_alloc_directive_t directive);12

C

CHAPTER 3. DATA STRUCTURES AND TYPES 81

CHAPTER 4

Initialization and Finalization

The PMIx library is required to be initialized and finalized around the usage of most of the APIs.1
The APIs that may be used outside of the initialized and finalized region are noted. All other APIs2
must be used inside this region.3

There are three sets of initialization and finalization functions depending upon the role of the4
process in the PMIx universe. Each of these functional sets are described in this chapter. Note that5
a process can only call one of the init/finalize functional pairs - e.g., a process that calls the client6
initialization function cannot also call the tool or server initialization functions, and must call the7
corresponding client finalize.8

Advice to users
Processes that initialize as a server or tool automatically are given access to all client APIs. Server9
initialization includes setting up the infrastructure to support local clients - thus, it necessarily10
includes overhead and an increased memory footprint. Tool initialization automatically searches for11
a server to which it can connect — if declared as a launcher, the PMIx library sets up the required12
“hooks” for other tools (e.g., debuggers) to attach to it.13

4.1 Query14

The API defined in this section can be used by any PMIx process, regardless of their role in the15
PMIx universe.16

4.1.1 PMIx_Initialized17

Format18

PMIx v1.0 C
int PMIx_Initialized(void)19

C
A value of 1 (true) will be returned if the PMIx library has been initialized, and 0 (false) otherwise.20

Rationale
The return value is an integer for historical reasons as that was the signature of prior PMI libraries.21

82

Description1

Check to see if the PMIx library has been initialized using any of the init functions: PMIx_Init ,2
PMIx_server_init , or PMIx_tool_init .3

4.1.2 PMIx_Get_version4

Summary5

Get the PMIx version information.6

Format7

PMIx v1.0 C
const char* PMIx_Get_version(void)8

C

Description9

Get the PMIx version string. Note that the provided string is statically defined and must not be10
free’d.11

4.2 Client Initialization and Finalization12

Initialization and finalization routines for PMIx clients.13

Advice to users

The PMIx ad hoc v1.0 Standard defined the PMIx_Init function, but modified the function14
signature in the v1.2 version. The ad hoc v1.0 version is not included in this document to avoid15
confusion.16

4.2.1 PMIx_Init17

Summary18

Initialize the PMIx client library19

CHAPTER 4. INITIALIZATION AND FINALIZATION 83

Format1

PMIx v1.2 C
pmix_status_t2
PMIx_Init(pmix_proc_t *proc,3

pmix_info_t info[], size_t ninfo)4

C

INOUT proc5
proc structure (handle)6

IN info7
Array of pmix_info_t structures (array of handles)8

IN ninfo9
Number of element in the info array (size_t)10

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.11

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:12

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)13
Disable legacy UNIX socket (usock) support If the library supports Unix socket14
connections, this attribute may be supported for disabling it.15

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)16
POSIX mode_t (9 bits valid) If the library supports socket connections, this attribute may17
be supported for setting the socket mode.18

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)19
Use only one rendezvous socket, letting priorities and/or environment parameters select the20
active transport. If the library supports multiple methods for clients to connect to servers,21
this attribute may be supported for disabling all but one of them.22

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)23
If provided, directs that the TCP URI be reported and indicates the desired method of24
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket25
connections, this attribute may be supported for reporting the URI.26

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)27
Comma-delimited list of devices and/or CIDR notation to include when establishing the28
TCP connection. If the library supports TCP socket connections, this attribute may be29
supported for specifying the interfaces to be used.30

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)31
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the32
TCP connection. If the library supports TCP socket connections, this attribute may be33
supported for specifying the interfaces that are not to be used.34

84 PMIx Standard – Version 2.0 – September 2018

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)1
The IPv4 port to be used. If the library supports IPV4 connections, this attribute may be2
supported for specifying the port to be used.3

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)4
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be5
supported for specifying the port to be used.6

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)7
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,8
this attribute may be supported for disabling it.9

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)10
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,11
this attribute may be supported for disabling it.12

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)13
Pointer to libevent1 event_base to use in place of the internal progress thread.14

PMIX_GDS_MODULE "pmix.gds.mod" (char*)15
Comma-delimited string of desired modules. This attribute is specific to the PRI and16
controls only the selection of GDS module for internal use by the process. Module selection17
for interacting with the server is performed dynamically during the connection process.18

Description19

Initialize the PMIx client, returning the process identifier assigned to this client’s application in the20
provided pmix_proc_t struct. Passing a value of NULL for this parameter is allowed if the user21
wishes solely to initialize the PMIx system and does not require return of the identifier at that time.22

When called, the PMIx client shall check for the required connection information of the local PMIx23
server and establish the connection. If the information is not found, or the server connection fails,24
then an appropriate error constant shall be returned.25

If successful, the function shall return PMIX_SUCCESS and fill the proc structure (if provided)26
with the server-assigned namespace and rank of the process within the application. In addition, all27
startup information provided by the resource manager shall be made available to the client process28
via subsequent calls to PMIx_Get .29

The PMIx client library shall be reference counted, and so multiple calls to PMIx_Init are30
allowed by the standard. Thus, one way for an application process to obtain its namespace and rank31
is to simply call PMIx_Init with a non-NULL proc parameter. Note that each call to32
PMIx_Init must be balanced with a call to PMIx_Finalize to maintain the reference count.33

1http://libevent.org/

CHAPTER 4. INITIALIZATION AND FINALIZATION 85

http://libevent.org/

Each call to PMIx_Init may contain an array of pmix_info_t structures passing directives to1
the PMIx client library as per the above attributes.2

Multiple calls to PMIx_Init shall not include conflicting directives. The PMIx_Init function3
will return an error when directives that conflict with prior directives are encountered.4

4.2.2 PMIx_Finalize5

Summary6

Finalize the PMIx client library.7

Format8

PMIx v1.0 C
pmix_status_t9
PMIx_Finalize(const pmix_info_t info[], size_t ninfo)10

C

IN info11
Array of pmix_info_t structures (array of handles)12

IN ninfo13
Number of element in the info array (size_t)14

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.15

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:16

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)17
Execute a blocking fence operation before executing the specified operation. By default,18
PMIx_Finalize does not include an internal barrier operation. This attribute directs19
PMIx_Finalize to execute a barrier as part of the finalize operation.20

Description21

Decrement the PMIx client library reference count. When the reference count reaches zero, the22
library will finalize the PMIx client, closing the connection with the local PMIx server and23
releasing all internally allocated memory.24

86 PMIx Standard – Version 2.0 – September 2018

4.3 Tool Initialization and Finalization1

Initialization and finalization routines for PMIx tools.2

4.3.1 PMIx_tool_init3

Summary4

Initialize the PMIx library for operating as a tool.5

Format6

PMIx v2.0 C
pmix_status_t7
PMIx_tool_init(pmix_proc_t *proc,8

pmix_info_t info[], size_t ninfo)9

C

INOUT proc10
pmix_proc_t structure (handle)11

IN info12
Array of pmix_info_t structures (array of handles)13

IN ninfo14
Number of element in the info array (size_t)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

The following attributes are required to be supported by all PMIx libraries:17

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)18
Name of the namespace to use for this tool.19

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)20
Rank of this tool.21

PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)22
The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.23

PMIX_SERVER_URI "pmix.srvr.uri" (char*)24
URI of the PMIx server to be contacted.25

CHAPTER 4. INITIALIZATION AND FINALIZATION 87

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:1

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)2
The requestor requires that a connection be made only to a local, system-level PMIx server.3

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)4
Preferentially, look for a system-level PMIx server first.5

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)6
PID of the target PMIx server for a tool.7

PMIX_TCP_URI "pmix.tcp.uri" (char*)8
The URI of the PMIx server to connect to, or a file name containing it in the form of9
file:<name of file containing it>.10

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)11
Time in seconds between connection attempts to a PMIx server.12

PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)13
Maximum number of times to try to connect to PMIx server.14

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)15
POSIX mode_t (9 bits valid) If the library supports socket connections, this attribute may16
be supported for setting the socket mode.17

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)18
If provided, directs that the TCP URI be reported and indicates the desired method of19
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket20
connections, this attribute may be supported for reporting the URI.21

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)22
Comma-delimited list of devices and/or CIDR notation to include when establishing the23
TCP connection. If the library supports TCP socket connections, this attribute may be24
supported for specifying the interfaces to be used.25

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)26
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the27
TCP connection. If the library supports TCP socket connections, this attribute may be28
supported for specifying the interfaces that are not to be used.29

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)30
The IPv4 port to be used. If the library supports IPV4 connections, this attribute may be31
supported for specifying the port to be used.32

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)33
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be34
supported for specifying the port to be used.35

88 PMIx Standard – Version 2.0 – September 2018

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)1
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,2
this attribute may be supported for disabling it.3

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)4
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,5
this attribute may be supported for disabling it.6

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)7
Pointer to libevent2 event_base to use in place of the internal progress thread.8

PMIX_GDS_MODULE "pmix.gds.mod" (char*)9
Comma-delimited string of desired modules. This attribute is specific to the PRI and10
controls only the selection of GDS module for internal use by the process. Module selection11
for interacting with the server is performed dynamically during the connection process.12

Description13

Initialize the PMIx tool, returning the process identifier assigned to this tool in the provided14
pmix_proc_t struct. The info array is used to pass user requests pertaining to the init and15
subsequent operations. Passing a NULL value for the array pointer is supported if no directives are16
desired.17

If called with the PMIX_TOOL_DO_NOT_CONNECT attribute, the PMIx tool library will fully18
initialize but not attempt to connect to a PMIx server. The tool can connect to a server at a later19
point in time, if desired. In all other cases, the PMIx tool library will attempt to connect to20
according to the following precedence chain:21

• if PMIX_SERVER_URI or PMIX_TCP_URI is given, then connection will be attempted to the22
server at the specified URI. Note that it is an error for both of these attributes to be specified.23
PMIX_SERVER_URI is the preferred method as it is more generalized — PMIX_TCP_URI is24
provided for those cases where the user specifically wants to use a TCP transport for the25
connection and wants to error out if it isn’t available or cannot succeed. The PMIx library will26
return an error if connection fails — it will not proceed to check for other connection options as27
the user specified a particular one to use28

• if PMIX_SERVER_PIDINFO was provided, then the tool will search under the directory29
provided by the PMIX_SERVER_TMPDIR environmental variable for a rendezvous file created30
by the process corresponding to that PID. The PMIx library will return an error if the rendezvous31
file cannot be found, or the connection is refused by the server32

2http://libevent.org/

CHAPTER 4. INITIALIZATION AND FINALIZATION 89

http://libevent.org/

• if PMIX_CONNECT_TO_SYSTEM is given, then the tool will search for a system-level1
rendezvous file created by a PMIx server in the directory specified by the2
PMIX_SYSTEM_TMPDIR environmental variable. If found, then the tool will attempt to3
connect to it. An error is returned if the rendezvous file cannot be found or the connection is4
refused.5

• if PMIX_CONNECT_SYSTEM_FIRST is given, then the tool will search for a system-level6
rendezvous file created by a PMIx server in the directory specified by the7
PMIX_SYSTEM_TMPDIR environmental variable. If found, then the tool will attempt to8
connect to it. In this case, no error will be returned if the rendezvous file is not found or9
connection is refused — the PMIx library will silently continue to the next option10

• by default, the tool will search the directory tree under the directory provided by the11
PMIX_SERVER_TMPDIR environmental variable for rendezvous files of PMIx servers,12
attempting to connect to each it finds until one accepts the connection. If no rendezvous files are13
found, or all contacted servers refuse connection, then the PMIx library will return an error.14

If successful, the function will return PMIX_SUCCESS and will fill the provided structure (if15
provided) with the server-assigned namespace and rank of the tool. Note that each connection16
attempt in the above precedence chain will retry (with delay between each retry) a number of times17
according to the values of the corresponding attributes. Default is no retries.18

Note that the PMIx tool library is referenced counted, and so multiple calls to PMIx_tool_init19
are allowed. Thus, one way to obtain the namespace and rank of the process is to simply call20
PMIx_tool_init with a non-NULL parameter.21

4.3.2 PMIx_tool_finalize22

Summary23

Finalize the PMIx library for a tool connection.24

Format25

PMIx v2.0 C
pmix_status_t26
PMIx_tool_finalize(void)27

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.28

Description29

Finalize the PMIx tool library, closing the connection to the server. An error code will be returned30
if, for some reason, the connection cannot be cleanly terminated — in this case, the connection is31
dropped.32

90 PMIx Standard – Version 2.0 – September 2018

4.4 Server Initialization and Finalization1

Initialization and finalization routines for PMIx servers.2

4.4.1 PMIx_server_init3

Summary4

Initialize the PMIx server.5

Format6

PMIx v1.0 C
pmix_status_t7
PMIx_server_init(pmix_server_module_t *module,8

pmix_info_t info[], size_t ninfo)9

C

INOUT module10
pmix_server_module_t structure (handle)11

IN info12
Array of pmix_info_t structures (array of handles)13

IN ninfo14
Number of elements in the info array (size_t)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

The following attributes are required to be supported by all PMIx libraries:17

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)18
Name of the namespace to use for this PMIx server.19

PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)20
Rank of this PMIx server21

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)22
Top-level temporary directory for all client processes connected to this server, and where the23
PMIx server will place its tool rendezvous point and contact information.24

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)25
Temporary directory for this system, and where a PMIx server that declares itself to be a26
system-level server will place a tool rendezvous point and contact information.27

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)28

CHAPTER 4. INITIALIZATION AND FINALIZATION 91

The host RM wants to declare itself as willing to accept tool connection requests.1

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)2
The host RM wants to declare itself as being the local system server for PMIx connection3
requests.4

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:5

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)6
Disable legacy UNIX socket (usock) support If the library supports Unix socket7
connections, this attribute may be supported for disabling it.8

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)9
POSIX mode_t (9 bits valid) If the library supports socket connections, this attribute may10
be supported for setting the socket mode.11

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)12
If provided, directs that the TCP URI be reported and indicates the desired method of13
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket14
connections, this attribute may be supported for reporting the URI.15

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)16
Comma-delimited list of devices and/or CIDR notation to include when establishing the17
TCP connection. If the library supports TCP socket connections, this attribute may be18
supported for specifying the interfaces to be used.19

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)20
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the21
TCP connection. If the library supports TCP socket connections, this attribute may be22
supported for specifying the interfaces that are not to be used.23

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)24
The IPv4 port to be used. If the library supports IPV4 connections, this attribute may be25
supported for specifying the port to be used.26

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)27
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be28
supported for specifying the port to be used.29

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)30
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,31
this attribute may be supported for disabling it.32

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)33
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,34
this attribute may be supported for disabling it.35

92 PMIx Standard – Version 2.0 – September 2018

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)1
Allow connections from remote tools. Forces the PMIx server to not exclusively use2
loopback device. If the library supports connections from remote tools, this attribute may3
be supported for enabling or disabling it.4

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)5
Pointer to libevent3 event_base to use in place of the internal progress thread.6

PMIX_GDS_MODULE "pmix.gds.mod" (char*)7
Comma-delimited string of desired modules. This attribute is specific to the PRI and8
controls only the selection of GDS module for internal use by the process. Module selection9
for interacting with the server is performed dynamically during the connection process.10

Description11

Initialize the PMIx server support library, and provide a pointer to a pmix_server_module_t12
structure containing the caller’s callback functions. The array of pmix_info_t structs is used to13
pass additional info that may be required by the server when initializing. For example, it may14
include the PMIX_SERVER_TOOL_SUPPORT key, thereby indicating that the daemon is willing15
to accept connection requests from tools.16

Advice to PMIx server hosts

Providing a value of NULL for the module argument is permitted, as is passing an empty module17
structure. Doing so indicates that the host environment will not provide support for multi-node18
operations such as PMIx_Fence , but does intend to support local clients access to information.19

4.4.2 PMIx_server_finalize20

Summary21

Finalize the PMIx server library.22

Format23

PMIx v1.0 C
pmix_status_t24
PMIx_server_finalize(void)25

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.26

3http://libevent.org/

CHAPTER 4. INITIALIZATION AND FINALIZATION 93

http://libevent.org/

Description1

Finalize the PMIx server support library, terminating all connections to attached tools and any local2
clients. All memory usage is released.3

94 PMIx Standard – Version 2.0 – September 2018

CHAPTER 5

Key/Value Management

Management of key-value pairs in PMIx is a distributed responsibility. While the stated objective of1
the PMIx community is to eliminate collective operations, it is recognized that the traditional2
method of publishing/exchanging data must be supported until that objective can be met. This3
method relies on processes to discover and publish their local information which is collected by the4
local PMIx server library. Global exchange of the published information is then executed via a5
collective operation performed by the host SMS servers.6

5.1 Setting and Accessing Key/Value Pairs7

5.1.1 PMIx_Put8

Summary9

Push a key/value pair into the client’s namespace.10

Format11

PMIx v1.0 C
pmix_status_t12
PMIx_Put(pmix_scope_t scope,13

const pmix_key_t key,14
pmix_value_t *val)15

C

IN scope16
Distribution scope of the provided value (handle)17

IN key18
key (pmix_key_t)19

IN value20
Reference to a pmix_value_t structure (handle)21

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.22

95

Description1

Push a value into the client’s namespace. The client’s PMIx library will cache the information2
locally until PMIx_Commit is called.3

The provided scope is passed to the local PMIx server, which will distribute the data to other4
processes according to the provided scope. The pmix_scope_t values are defined in5
Section 3.2.9 on page 26. Specific implementations may support different scope values, but all6
implementations must support at least PMIX_GLOBAL.7

The pmix_value_t structure supports both string and binary values. PMIx implementations8
will support heterogeneous environments by properly converting binary values between host9
architectures, and will copy the provided value into internal memory.10

Advice to PMIx library implementers

The PMIx server library will properly pack/unpack data to accommodate heterogeneous11
environments. The host SMS is not involved in this action. The value argument must be copied -12
the caller is free to release it following return from the function.13

Advice to users

The value is copied by the PMIx client library. Thus, the application is free to release and/or14
modify the value once the call to PMIx_Put has completed.15

Note that keys starting with a string of “pmix” are exclusively reserved for the PMIx standard and16
must not be used in calls to PMIx_Put . Thus, applications should never use a defined “PMIX_”17
attribute as the key in a call to PMIx_Put .18

5.1.2 PMIx_Get19

Summary20

Retrieve a key/value pair from the client’s namespace.21

96 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,3

const pmix_info_t info[], size_t ninfo,4
pmix_value_t **val)5

C

IN proc6
process reference (handle)7

IN key8
key to retrieve (pmix_key_t)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of element in the info array (integer)13

OUT val14
value (handle)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

The following attributes are required to be supported by all PMIx libraries:17

PMIX_OPTIONAL "pmix.optional" (bool)18
Look only in the client’s local data store for the requested value - do not request data from19
the PMIx server if not found.20

PMIX_IMMEDIATE "pmix.immediate" (bool)21
Specified operation should immediately return an error from the PMIx server if the requested22
data cannot be found - do not request it from the host RM.23

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)24
Scope of the data to be found in a PMIx_Get call.25

Optional Attributes

The following attributes are optional for host environments:26

PMIX_TIMEOUT "pmix.timeout" (int)27
Time in seconds before the specified operation should time out (0 indicating infinite) in28
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent29
the target process from ever exposing its data.30

CHAPTER 5. KEY/VALUE MANAGEMENT 97

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between delivery of the data by the host2
environment versus internal timeout in the PMIx server library. Implementers that choose to3
support PMIX_TIMEOUT directly in the PMIx server library must take care to resolve the race4
condition and should avoid passing PMIX_TIMEOUT to the host environment so that multiple5
competing timeouts are not created.6

Description7

Retrieve information for the specified key as published by the process identified in the given8
pmix_proc_t , returning a pointer to the value in the given address.9

This is a blocking operation - the caller will block until either the specified data becomes available10
from the specified rank in the proc structure or the operation times out should the PMIX_TIMEOUT11
attribute have been given. The caller is responsible for freeing all memory associated with the12
returned value when no longer required.13

The info array is used to pass user requests regarding the get operation.14

Advice to users

Information provided by the PMIx server at time of process start is accessed by providing the15
namespace of the job with the rank set to PMIX_RANK_WILDCARD . The list of data referenced in16
this way is maintained on the PMIx web site at https://pmix.org/support/faq/wildcard-rank-access/17
but includes items such as the number of processes in the namespace (PMIX_JOB_SIZE), total18
available slots in the allocation (PMIX_UNIV_SIZE), and the number of nodes in the allocation (19
PMIX_NUM_NODES).20

In general, only data posted by a process via PMIx_Put needs to be retrieved by specifying the21
rank of the posting process. All other information is retrievable using a rank of22
PMIX_RANK_WILDCARD .23

5.1.3 PMIx_Get_nb24

Summary25

Nonblocking PMIx_Get operation.26

98 PMIx Standard – Version 2.0 – September 2018

https://pmix.org/support/faq/wildcard-rank-access/

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Get_nb(const pmix_proc_t *proc, const char key[],3

const pmix_info_t info[], size_t ninfo,4
pmix_value_cbfunc_t cbfunc, void *cbdata)5

C

IN proc6
process reference (handle)7

IN key8
key to retrieve (string)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.18

Required Attributes

The following attributes are required to be supported by all PMIx libraries:19

PMIX_OPTIONAL "pmix.optional" (bool)20
Look only in the client’s local data store for the requested value - do not request data from21
the PMIx server if not found.22

PMIX_IMMEDIATE "pmix.immediate" (bool)23
Specified operation should immediately return an error from the PMIx server if the requested24
data cannot be found - do not request it from the host RM.25

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)26
Scope of the data to be found in a PMIx_Get call.27

Optional Attributes

The following attributes are optional for host environments that support this operation:28

PMIX_TIMEOUT "pmix.timeout" (int)29
Time in seconds before the specified operation should time out (0 indicating infinite) in30
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent31
the target process from ever exposing its data.32

CHAPTER 5. KEY/VALUE MANAGEMENT 99

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between delivery of the data by the host2
environment versus internal timeout in the PMIx server library. Implementers that choose to3
support PMIX_TIMEOUT directly in the PMIx server library must take care to resolve the race4
condition and should avoid passing PMIX_TIMEOUT to the host environment so that multiple5
competing timeouts are not created.6

Description7

The callback function will be executed once the specified data becomes available from the8
identified process and retrieved by the local server. The info array is used as described by the9
PMIx_Get routine.10

Advice to users

Information provided by the PMIx server at time of process start is accessed by providing the11
namespace of the job with the rank set to PMIX_RANK_WILDCARD . The list of data referenced in12
this way is maintained on the PMIx web site at https://pmix.org/support/faq/wildcard-rank-access/13
but includes items such as the number of processes in the namespace (PMIX_JOB_SIZE), total14
available slots in the allocation (PMIX_UNIV_SIZE), and the number of nodes in the allocation (15
PMIX_NUM_NODES).16

In general, only data posted by a process via PMIx_Put needs to be retrieved by specifying the17
rank of the posting process. All other information is retrievable using a rank of18
PMIX_RANK_WILDCARD .19

5.1.4 PMIx_Store_internal20

Summary21

Store some data locally for retrieval by other areas of the proc.22

100 PMIx Standard – Version 2.0 – September 2018

https://pmix.org/support/faq/wildcard-rank-access/

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Store_internal(const pmix_proc_t *proc,3

const pmix_key_t key,4
pmix_value_t *val);5

C

IN proc6
process reference (handle)7

IN key8
key to retrieve (string)9

IN val10
Value to store (handle)11

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.12

Description13

Store some data locally for retrieval by other areas of the proc. This is data that has only internal14
scope - it will never be “pushed” externally.15

5.2 Exchanging Key/Value Pairs16

The APIs defined in this section push key/value pairs from the client to the local PMIx server, and17
circulate the data between PMIx servers for subsequent retrieval by the local clients.18

5.2.1 PMIx_Commit19

Summary20

Push all previously PMIx_Put values to the local PMIx server.21

Format22

PMIx v1.0 C
pmix_status_t PMIx_Commit(void)23

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.24

CHAPTER 5. KEY/VALUE MANAGEMENT 101

Description1

This is an asynchronous operation. The PRI will immediately return to the caller while the data is2
transmitted to the local server in the background.3

Advice to users

The local PMIx server will cache the information locally - i.e., the committed data will not be4
circulated during PMIx_Commit . Availability of the data upon completion of PMIx_Commit is5
therefore implementation-dependent.6

5.2.2 PMIx_Fence7

Summary8

Execute a blocking barrier across the processes identified in the specified array, collecting9
information posted via PMIx_Put as directed.10

Format11

PMIx v1.0 C
pmix_status_t12
PMIx_Fence(const pmix_proc_t procs[], size_t nprocs,13

const pmix_info_t info[], size_t ninfo)14

C

IN procs15
Array of pmix_proc_t structures (array of handles)16

IN nprocs17
Number of element in the procs array (integer)18

IN info19
Array of info structures (array of handles)20

IN ninfo21
Number of element in the info array (integer)22

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.23

Required Attributes

The following attributes are required to be supported by all PMIx libraries:24

PMIX_COLLECT_DATA "pmix.collect" (bool)25
Collect data and return it at the end of the operation.26

102 PMIx Standard – Version 2.0 – September 2018

Optional Attributes

The following attributes are optional for host environments:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)6
Comma-delimited list of algorithms to use for the collective operation.7

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)8
If true, indicates that the requested choice of algorithm is mandatory.9

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host10
environment due to race condition considerations between completion of the operation versus11
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT12
directly in the PMIx server library must take care to resolve the race condition and should avoid13
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not14
created.15

Description16

Passing a NULL pointer as the procs parameter indicates that the fence is to span all processes in17
the client’s namespace. Each provided pmix_proc_t struct can pass PMIX_RANK_WILDCARD18
to indicate that all processes in the given namespace are participating.19

The info array is used to pass user requests regarding the fence operation.20

Note that for scalability reasons, the default behavior for PMIx_Fence is to not collect the data.21

5.2.3 PMIx_Fence_nb22

Summary23

Execute a nonblocking PMIx_Fence across the processes identified in the specified array of24
processes, collecting information posted via PMIx_Put as directed.25

CHAPTER 5. KEY/VALUE MANAGEMENT 103

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Fence_nb(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc, void *cbdata)5

C

IN procs6
Array of pmix_proc_t structures (array of handles)7

IN nprocs8
Number of element in the procs array (integer)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of element in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.18

Required Attributes

The following attributes are required to be supported by all PMIx libraries:19

PMIX_COLLECT_DATA "pmix.collect" (bool)20
Collect data and return it at the end of the operation.21

Optional Attributes

The following attributes are optional for host environments that support this operation:22

PMIX_TIMEOUT "pmix.timeout" (int)23
Time in seconds before the specified operation should time out (0 indicating infinite) in24
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent25
the target process from ever exposing its data.26

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)27
Comma-delimited list of algorithms to use for the collective operation.28

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)29
If true, indicates that the requested choice of algorithm is mandatory.30

104 PMIx Standard – Version 2.0 – September 2018

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between completion of the operation versus2
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3
directly in the PMIx server library must take care to resolve the race condition and should avoid4
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5
created.6

Description7

Nonblocking PMIx_Fence routine. Note that the function will return an error if a NULL callback8
function is given.9

Note that for scalability reasons, the default behavior for PMIx_Fence_nb is to not collect the10
data.11

5.3 Publish and Lookup Data12

The APIs defined in this section publish data from one client that can be later exchanged and looked13
up by another client.14

Advice to PMIx library implementers

PMIx libraries that support any of the functions in this section are required to support all of them.15

Advice to PMIx server hosts

Host environments that support any of the functions in this section are required to support all of16
them.17

5.3.1 PMIx_Publish18

Summary19

Publish data for later access via PMIx_Lookup .20

CHAPTER 5. KEY/VALUE MANAGEMENT 105

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Publish(const pmix_info_t info[], size_t ninfo)3

C

IN info4
Array of info structures (array of handles)5

IN ninfo6
Number of element in the info array (integer)7

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.8

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any9
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is10
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that11
published the info.12

Optional Attributes

The following attributes are optional for host environments that support this operation:13

PMIX_TIMEOUT "pmix.timeout" (int)14
Time in seconds before the specified operation should time out (0 indicating infinite) in15
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent16
the target process from ever exposing its data.17

PMIX_RANGE "pmix.range" (pmix_data_range_t)18
Value for calls to publish/lookup/unpublish or for monitoring event notifications.19

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)20
Value for calls to PMIx_Publish .21

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host22
environment due to race condition considerations between completion of the operation versus23
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT24
directly in the PMIx server library must take care to resolve the race condition and should avoid25
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not26
created.27

106 PMIx Standard – Version 2.0 – September 2018

Description1

Publish the data in the info array for subsequent lookup. By default, the data will be published into2
the PMIX_SESSION range and with PMIX_PERSIST_APP persistence. Changes to those3
values, and any additional directives, can be included in the pmix_info_t array. Attempts to4
access the data by processes outside of the provided data range will be rejected. The persistence5
parameter instructs the server as to how long the data is to be retained.6

The blocking form will block until the server confirms that the data has been sent to the PMIx7
server and that it has obtained confirmation from its host SMS daemon that the data is ready to be8
looked up. Data is copied into the backing key-value data store, and therefore the info array can be9
released upon return from the blocking function call.10

Advice to users

Duplicate keys within the specified data range may lead to unexpected behavior depending on host11
RM implementation of the backing key-value store.12

Advice to PMIx library implementers

Implementations should, to the best of their ability, detect duplicate keys and protect the user from13
unexpected behavior - preferably returning an error. This version of the standard does not define a14
specific error code to be returned, so the implementation must make it clear to the user what to15
expect in this scenario. One suggestion is to define an RM specific error code beyond the16
PMIX_EXTERNAL_ERR_BASE boundary. Future versions of the standard will clarify that a17
specific PMIx error be returned when conflicting values are published for a given key, and will18
provide attributes to allow modified behaviors such as overwrite.19

5.3.2 PMIx_Publish_nb20

Summary21

Nonblocking PMIx_Publish routine.22

CHAPTER 5. KEY/VALUE MANAGEMENT 107

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Publish_nb(const pmix_info_t info[], size_t ninfo,3

pmix_op_cbfunc_t cbfunc, void *cbdata)4

C

IN info5
Array of info structures (array of handles)6

IN ninfo7
Number of element in the info array (integer)8

IN cbfunc9
Callback function pmix_op_cbfunc_t (function reference)10

IN cbdata11
Data to be passed to the callback function (memory reference)12

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.13

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any14
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is15
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that16
published the info.17

Optional Attributes

The following attributes are optional for host environments that support this operation:18

PMIX_TIMEOUT "pmix.timeout" (int)19
Time in seconds before the specified operation should time out (0 indicating infinite) in20
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent21
the target process from ever exposing its data.22

PMIX_RANGE "pmix.range" (pmix_data_range_t)23
Value for calls to publish/lookup/unpublish or for monitoring event notifications.24

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)25
Value for calls to PMIx_Publish .26

108 PMIx Standard – Version 2.0 – September 2018

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between completion of the operation versus2
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3
directly in the PMIx server library must take care to resolve the race condition and should avoid4
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5
created.6

Description7

Nonblocking PMIx_Publish routine. The non-blocking form will return immediately, executing8
the callback when the PMIx server receives confirmation from its host SMS daemon.9

Note that the function will return an error if a NULL callback function is given, and that the info10
array must be maintained until the callback is provided.11

5.3.3 PMIx_Lookup12

Summary13

Lookup information published by this or another process with PMIx_Publish or14
PMIx_Publish_nb .15

Format16

PMIx v1.0 C
pmix_status_t17
PMIx_Lookup(pmix_pdata_t data[], size_t ndata,18

const pmix_info_t info[], size_t ninfo)19

C

INOUT data20
Array of publishable data structures (array of handles)21

IN ndata22
Number of elements in the data array (integer)23

IN info24
Array of info structures (array of handles)25

IN ninfo26
Number of elements in the info array (integer)27

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.28

CHAPTER 5. KEY/VALUE MANAGEMENT 109

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any1
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is2
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is3
requesting the info.4

Optional Attributes

The following attributes are optional for host environments that support this operation:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (0 indicating infinite) in7
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent8
the target process from ever exposing its data.9

PMIX_RANGE "pmix.range" (pmix_data_range_t)10
Value for calls to publish/lookup/unpublish or for monitoring event notifications.11

PMIX_WAIT "pmix.wait" (int)12
Caller requests that the PMIx server wait until at least the specified number of values are13
found (0 indicates all and is the default).14

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host15
environment due to race condition considerations between completion of the operation versus16
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT17
directly in the PMIx server library must take care to resolve the race condition and should avoid18
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not19
created.20

110 PMIx Standard – Version 2.0 – September 2018

Description1

Lookup information published by this or another process. By default, the search will be conducted2
across the PMIX_SESSION range. Changes to the range, and any additional directives, can be3
provided in the pmix_info_t array.4

Note that the search is also constrained to only data published by the current user (i.e., the search5
will not return data published by an application being executed by another user). There currently is6
no option to override this behavior - such an option may become available later via an appropriate7
pmix_info_t directive.8

The data parameter consists of an array of pmix_pdata_t struct with the keys specifying the9
requested information. Data will be returned for each key in the associated value struct. Any key10
that cannot be found will return with a data type of PMIX_UNDEF . The function will return11
PMIX_SUCCESS if any values can be found, so the caller must check each data element to ensure12
it was returned.13

The proc field in each pmix_pdata_t struct will contain the namespace/rank of the process that14
published the data.15

Advice to users

Although this is a blocking function, it will not wait by default for the requested data to be16
published. Instead, it will block for the time required by the server to lookup its current data and17
return any found items. Thus, the caller is responsible for ensuring that data is published prior to18
executing a lookup, using PMIX_WAIT to instruct the server to wait for the data to be published, or19
for retrying until the requested data is found.20

5.3.4 PMIx_Lookup_nb21

Summary22

Nonblocking version of PMIx_Lookup .23

CHAPTER 5. KEY/VALUE MANAGEMENT 111

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Lookup_nb(char **keys,3

const pmix_info_t info[], size_t ninfo,4
pmix_lookup_cbfunc_t cbfunc, void *cbdata)5

C

IN keys6
Array to be provided to the callback (array of strings)7

IN info8
Array of info structures (array of handles)9

IN ninfo10
Number of element in the info array (integer)11

IN cbfunc12
Callback function (handle)13

IN cbdata14
Callback data to be provided to the callback function (pointer)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any17
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is18
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is19
requesting the info.20

Optional Attributes

The following attributes are optional for host environments that support this operation:21

PMIX_TIMEOUT "pmix.timeout" (int)22
Time in seconds before the specified operation should time out (0 indicating infinite) in23
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent24
the target process from ever exposing its data.25

PMIX_RANGE "pmix.range" (pmix_data_range_t)26
Value for calls to publish/lookup/unpublish or for monitoring event notifications.27

PMIX_WAIT "pmix.wait" (int)28
Caller requests that the PMIx server wait until at least the specified number of values are29
found (0 indicates all and is the default).30

112 PMIx Standard – Version 2.0 – September 2018

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between completion of the operation versus2
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3
directly in the PMIx server library must take care to resolve the race condition and should avoid4
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5
created.6

Description7

Non-blocking form of the PMIx_Lookup function. Data for the provided NULL-terminated keys8
array will be returned in the provided callback function. As with PMIx_Lookup , the default9
behavior is to not wait for data to be published. The info array can be used to modify the behavior10
as previously described by PMIx_Lookup . Both the info and keys arrays must be maintained until11
the callback is provided.12

5.3.5 PMIx_Unpublish13

Summary14

Unpublish data posted by this process using the given keys.15

Format16

PMIx v1.0 C
pmix_status_t17
PMIx_Unpublish(char **keys,18

const pmix_info_t info[], size_t ninfo)19

C

IN info20
Array of info structures (array of handles)21

IN ninfo22
Number of element in the info array (integer)23

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.24

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any25
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is26
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is27
requesting the operation.28

CHAPTER 5. KEY/VALUE MANAGEMENT 113

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

PMIX_RANGE "pmix.range" (pmix_data_range_t)6
Value for calls to publish/lookup/unpublish or for monitoring event notifications.7

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host8
environment due to race condition considerations between completion of the operation versus9
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT10
directly in the PMIx server library must take care to resolve the race condition and should avoid11
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not12
created.13

Description14

Unpublish data posted by this process using the given keys. The function will block until the data15
has been removed by the server (i.e., it is safe to publish that key again). A value of NULL for the16
keys parameter instructs the server to remove all data published by this process.17

By default, the range is assumed to be PMIX_SESSION . Changes to the range, and any additional18
directives, can be provided in the info array.19

5.3.6 PMIx_Unpublish_nb20

Summary21

Nonblocking version of PMIx_Unpublish .22

114 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Unpublish_nb(char **keys,3

const pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc, void *cbdata)5

C

IN keys6
(array of strings)7

IN info8
Array of info structures (array of handles)9

IN ninfo10
Number of element in the info array (integer)11

IN cbfunc12
Callback function pmix_op_cbfunc_t (function reference)13

IN cbdata14
Data to be passed to the callback function (memory reference)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any17
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is18
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is19
requesting the operation.20

Optional Attributes

The following attributes are optional for host environments that support this operation:21

PMIX_TIMEOUT "pmix.timeout" (int)22
Time in seconds before the specified operation should time out (0 indicating infinite) in23
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent24
the target process from ever exposing its data.25

PMIX_RANGE "pmix.range" (pmix_data_range_t)26
Value for calls to publish/lookup/unpublish or for monitoring event notifications.27

CHAPTER 5. KEY/VALUE MANAGEMENT 115

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between completion of the operation versus2
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3
directly in the PMIx server library must take care to resolve the race condition and should avoid4
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5
created.6

Description7

Non-blocking form of the PMIx_Unpublish function. The callback function will be executed8
once the server confirms removal of the specified data. The info array must be maintained until the9
callback is provided.10

116 PMIx Standard – Version 2.0 – September 2018

CHAPTER 6

Process Management

This chapter defines functionality used by clients to create and destroy/abort processes in the PMIx1
universe.2

6.1 Abort3

PMIx provides a dedicated API by which an application can request that specified processes be4
aborted by the system.5

6.1.1 PMIx_Abort6

Summary7

Abort the specified processes8

Format9

PMIx v1.0 C
pmix_status_t10
PMIx_Abort(int status, const char msg[],11

pmix_proc_t procs[], size_t nprocs)12

C

IN status13
Error code to return to invoking environment (integer)14

IN msg15
String message to be returned to user (string)16

IN procs17
Array of pmix_proc_t structures (array of handles)18

IN nprocs19
Number of elements in the procs array (integer)20

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

117

Description1

Request that the host resource manager print the provided message and abort the provided array of2
procs. A Unix or POSIX environment should handle the provided status as a return error code from3
the main program that launched the application. A NULL for the procs array indicates that all4
processes in the caller’s namespace are to be aborted, including itself. Passing a NULL msg5
parameter is allowed.6

Advice to users

The response to this request is somewhat dependent on the specific resource manager and its7
configuration (e.g., some resource managers will not abort the application if the provided status is8
zero unless specifically configured to do so, and some cannot abort subsets of processes in an9
application), and thus lies outside the control of PMIx itself. However, the PMIx client library shall10
inform the RM of the request that the specified procs be aborted, regardless of the value of the11
provided status.12

Note that race conditions caused by multiple processes calling PMIx_Abort are left to the server13
implementation to resolve with regard to which status is returned and what messages (if any) are14
printed.15

6.2 Process Creation16

The PMIx_Spawn commands spawn new processes and/or applications in the PMIx universe.17
This may include requests to extend the existing resource allocation or obtain a new one, depending18
upon provided and supported attributes.19

6.2.1 PMIx_Spawn20

Summary21

Spawn a new job.22

118 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,3

const pmix_app_t apps[], size_t napps,4
char nspace[])5

C

IN job_info6
Array of info structures (array of handles)7

IN ninfo8
Number of elements in the job_info array (integer)9

IN apps10
Array of pmix_app_t structures (array of handles)11

IN napps12
Number of elements in the apps array (integer)13

OUT nspace14
Namespace of the new job (string)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any17
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is18
required to add the following attributes to those provided before passing the request to the host:19

PMIX_SPAWNED "pmix.spawned" (bool)20
true if this process resulted from a call to PMIx_Spawn .21

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)22
Process identifier of the parent process of the calling process.23

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)24
The requesting process is a PMIx client.25

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)26
The requesting process is a PMIx tool.27

Host environments that implement support for PMIx_Spawn are required to pass the28
PMIX_SPAWNED and PMIX_PARENT_ID attributes to all PMIx servers launching new child29
processes so those values can be returned to clients upon connection to the PMIx server. In30
addition, they are required to support the following attributes when present in either the job_info or31
the info array of an element of the apps array:32

PMIX_WDIR "pmix.wdir" (char*)33
Working directory for spawned processes.34

CHAPTER 6. PROCESS MANAGEMENT 119

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)1
Set the application’s current working directory to the session working directory assigned by2
the RM.3

PMIX_PREFIX "pmix.prefix" (char*)4
Prefix to use for starting spawned processes.5

PMIX_HOST "pmix.host" (char*)6
Comma-delimited list of hosts to use for spawned processes.7

PMIX_HOSTFILE "pmix.hostfile" (char*)8
Hostfile to use for spawned processes.9

Optional Attributes

The following attributes are optional for host environments that support this operation:10

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)11
Hostfile listing hosts to add to existing allocation.12

PMIX_ADD_HOST "pmix.addhost" (char*)13
Comma-delimited list of hosts to add to the allocation.14

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)15
Preload binaries onto nodes.16

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)17
Comma-delimited list of files to pre-position on nodes.18

PMIX_PERSONALITY "pmix.pers" (char*)19
Name of personality to use.20

PMIX_MAPPER "pmix.mapper" (char*)21
Mapping mechanism to use for placing spawned processes.22

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)23
Display process mapping upon spawn.24

PMIX_PPR "pmix.ppr" (char*)25
Number of processes to spawn on each identified resource.26

PMIX_MAPBY "pmix.mapby" (char*)27
Process mapping policy.28

PMIX_RANKBY "pmix.rankby" (char*)29
Process ranking policy.30

PMIX_BINDTO "pmix.bindto" (char*)31
Process binding policy.32

PMIX_NON_PMI "pmix.nonpmi" (bool)33

120 PMIx Standard – Version 2.0 – September 2018

Spawned processes will not call PMIx_Init .1

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)2
Spawned process rank that is to receive stdin.3

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)4
Forward this process’s stdin to the designated process.5

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)6
Forward stdout from spawned processes to this process.7

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)8
Forward stderr from spawned processes to this process.9

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)10
Spawned application consists of debugger daemons.11

PMIX_TAG_OUTPUT "pmix.tagout" (bool)12
Tag application output with the identity of the source process.13

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)14
Timestamp output from applications.15

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)16
Merge stdout and stderr streams from application processes.17

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)18
Output application output to the specified file.19

PMIX_INDEX_ARGV "pmix.indxargv" (bool)20
Mark the argv with the rank of the process.21

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)22
Number of cpus to assign to each rank.23

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)24
Do not place processes on the head node.25

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)26
Do not oversubscribe the cpus.27

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)28
Report bindings of the individual processes.29

PMIX_CPU_LIST "pmix.cpulist" (char*)30
List of cpus to use for this job.31

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)32
Application supports recoverable operations.33

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)34
Application is continuous, all failed processes should be immediately restarted.35

CHAPTER 6. PROCESS MANAGEMENT 121

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)1
Maximum number of times to restart a job.2

Description3

Spawn a new job. The assigned namespace of the spawned applications is returned in the nspace4
parameter. A NULL value in that location indicates that the caller doesn’t wish to have the5
namespace returned. The nspace array must be at least of size one more than PMIX_MAX_NSLEN .6

By default, the spawned processes will be PMIx “connected” to the parent process upon successful7
launch (see PMIx_Connect description for details). Note that this only means that (a) the parent8
process will be given a copy of the new job’s information so it can query job-level info without9
incurring any communication penalties, (b) newly spawned child processes will receive a copy of10
the parent processes job-level info, and (c) both the parent process and members of the child job11
will receive notification of errors from processes in their combined assemblage.12

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any13
application process to start will result in termination/cleanup of all processes in the newly spawned14
job and return of an error code to the caller.15

6.2.2 PMIx_Spawn_nb16

Summary17

Nonblocking version of the PMIx_Spawn routine.18

122 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Spawn_nb(const pmix_info_t job_info[], size_t ninfo,3

const pmix_app_t apps[], size_t napps,4
pmix_spawn_cbfunc_t cbfunc, void *cbdata)5

C

IN job_info6
Array of info structures (array of handles)7

IN ninfo8
Number of elements in the job_info array (integer)9

IN apps10
Array of pmix_app_t structures (array of handles)11

IN cbfunc12
Callback function pmix_spawn_cbfunc_t (function reference)13

IN cbdata14
Data to be passed to the callback function (memory reference)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any17
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is18
required to add the following attributes to those provided before passing the request to the host:19

PMIX_SPAWNED "pmix.spawned" (bool)20
true if this process resulted from a call to PMIx_Spawn .21

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)22
Process identifier of the parent process of the calling process.23

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)24
The requesting process is a PMIx client.25

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)26
The requesting process is a PMIx tool.27

Host environments that implement support for PMIx_Spawn are required to pass the28
PMIX_SPAWNED and PMIX_PARENT_ID attributes to all PMIx servers launching new child29
processes so those values can be returned to clients upon connection to the PMIx server. In30
addition, they are required to support the following attributes when present in either the job_info or31
the info array of an element of the apps array:32

PMIX_WDIR "pmix.wdir" (char*)33
Working directory for spawned processes.34

CHAPTER 6. PROCESS MANAGEMENT 123

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)1
Set the application’s current working directory to the session working directory assigned by2
the RM.3

PMIX_PREFIX "pmix.prefix" (char*)4
Prefix to use for starting spawned processes.5

PMIX_HOST "pmix.host" (char*)6
Comma-delimited list of hosts to use for spawned processes.7

PMIX_HOSTFILE "pmix.hostfile" (char*)8
Hostfile to use for spawned processes.9

Optional Attributes

The following attributes are optional for host environments that support this operation:10

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)11
Hostfile listing hosts to add to existing allocation.12

PMIX_ADD_HOST "pmix.addhost" (char*)13
Comma-delimited list of hosts to add to the allocation.14

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)15
Preload binaries onto nodes.16

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)17
Comma-delimited list of files to pre-position on nodes.18

PMIX_PERSONALITY "pmix.pers" (char*)19
Name of personality to use.20

PMIX_MAPPER "pmix.mapper" (char*)21
Mapping mechanism to use for placing spawned processes.22

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)23
Display process mapping upon spawn.24

PMIX_PPR "pmix.ppr" (char*)25
Number of processes to spawn on each identified resource.26

PMIX_MAPBY "pmix.mapby" (char*)27
Process mapping policy.28

PMIX_RANKBY "pmix.rankby" (char*)29
Process ranking policy.30

PMIX_BINDTO "pmix.bindto" (char*)31
Process binding policy.32

PMIX_NON_PMI "pmix.nonpmi" (bool)33

124 PMIx Standard – Version 2.0 – September 2018

Spawned processes will not call PMIx_Init .1

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)2
Spawned process rank that is to receive stdin.3

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)4
Forward this process’s stdin to the designated process.5

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)6
Forward stdout from spawned processes to this process.7

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)8
Forward stderr from spawned processes to this process.9

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)10
Spawned application consists of debugger daemons.11

PMIX_TAG_OUTPUT "pmix.tagout" (bool)12
Tag application output with the identity of the source process.13

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)14
Timestamp output from applications.15

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)16
Merge stdout and stderr streams from application processes.17

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)18
Output application output to the specified file.19

PMIX_INDEX_ARGV "pmix.indxargv" (bool)20
Mark the argv with the rank of the process.21

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)22
Number of cpus to assign to each rank.23

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)24
Do not place processes on the head node.25

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)26
Do not oversubscribe the cpus.27

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)28
Report bindings of the individual processes.29

PMIX_CPU_LIST "pmix.cpulist" (char*)30
List of cpus to use for this job.31

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)32
Application supports recoverable operations.33

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)34
Application is continuous, all failed processes should be immediately restarted.35

CHAPTER 6. PROCESS MANAGEMENT 125

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)1
Maximum number of times to restart a job.2

Description3

Nonblocking version of the PMIx_Spawn routine. The provided callback function will be4
executed upon successful start of all specified application processes.5

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any6
application process to start will result in termination/cleanup of all processes in the newly spawned7
job and return of an error code to the caller.8

6.3 Connecting and Disconnecting Processes9

This section defines functions to connect and disconnect processes in two or more separate PMIx10
namespaces. The PMIx definition of connected solely implies the following:11

• job-level information for each namespace is to be made available to all processes in the12
connected assemblage13

• any data posted by a process in the connected assemblage via calls to PMIx_Put and14
committed via PMIx_Commit is to be made accessible to all processes in the assemblage15

• the host environment should treat the failure of any process in the assemblage as a reportable16
event, taking action on the assemblage as if it were a single application. For example, if the17
environment defaults (in the absence of any application directives) to terminating an application18
upon failure of any process in that application, then the environment should terminate all19
processes in the connected assemblage upon failure of any member.20

Advice to PMIx server hosts

The host environment is not required to assign a new namespace to the connected assemblage, nor21
to assign new ranks for its members. However, it is required to generate a22
PMIX_ERR_INVALID_TERMINATION event should any process in the assemblage terminate or23
call PMIx_Finalize without first disconnecting from the assemblage.24

126 PMIx Standard – Version 2.0 – September 2018

Advice to users

Attempting to connect processes solely within the same namespace is essentially a no-op operation.1
While not explicitly prohibited, users are advised that a PMIx implementation or host environment2
may return an error in such cases.3

The PMIx implementation is not required to provide any tracking support for the assemblage. Thus,4
the application is responsible for maintaining the membership list of the assemblage.5

6.3.1 PMIx_Connect6

Summary7

Connect namespaces.8

Format9

PMIx v1.0 C
pmix_status_t10
PMIx_Connect(const pmix_proc_t procs[], size_t nprocs,11

const pmix_info_t info[], size_t ninfo)12

C

IN procs13
Array of proc structures (array of handles)14

IN nprocs15
Number of elements in the procs array (integer)16

IN info17
Array of info structures (array of handles)18

IN ninfo19
Number of elements in the info array (integer)20

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any22
provided attributes must be passed to the host SMS daemon for processing.23

CHAPTER 6. PROCESS MANAGEMENT 127

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)6
Comma-delimited list of algorithms to use for the collective operation.7

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)8
If true, indicates that the requested choice of algorithm is mandatory.9

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host10
environment due to race condition considerations between completion of the operation versus11
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT12
directly in the PMIx server library must take care to resolve the race condition and should avoid13
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not14
created.15

Description16

Record the processes specified by the procs array as connected as per the PMIx definition. The17
function will return once all processes identified in procs have called either PMIx_Connect or18
its non-blocking version, and the host environment has completed any supporting operations19
required to meet the terms of the PMIx definition of connected processes.20

Advice to users

All processes engaged in a given PMIx_Connect operation must provide the identical procs21
array as ordering of entries in the array and the method by which those processes are identified22
(e.g., use of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the23
host environment’s algorithm for uniquely identifying an operation.24

128 PMIx Standard – Version 2.0 – September 2018

Processes that combine via PMIx_Connect must call PMIx_Disconnect prior to finalizing1
and/or terminating - any process in the assemblage failing to meet this requirement will cause a2
PMIX_ERR_INVALID_TERMINATION event to be generated.3

A process can only engage in one connect operation involving the identical procs array at a time.4
However, a process can be simultaneously engaged in multiple connect operations, each involving a5
different procs array.6

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level7
directives regarding the algorithm to be used for any collective operation involved in the operation,8
timeout constraints, and other options available from the host RM.9

6.3.2 PMIx_Connect_nb10

Summary11

Nonblocking PMIx_Connect_nb routine.12

Format13

PMIx v1.0 C
pmix_status_t14
PMIx_Connect_nb(const pmix_proc_t procs[], size_t nprocs,15

const pmix_info_t info[], size_t ninfo,16
pmix_op_cbfunc_t cbfunc, void *cbdata)17

C

IN procs18
Array of proc structures (array of handles)19

IN nprocs20
Number of elements in the procs array (integer)21

IN info22
Array of info structures (array of handles)23

IN ninfo24
Number of element in the info array (integer)25

IN cbfunc26
Callback function pmix_op_cbfunc_t (function reference)27

IN cbdata28
Data to be passed to the callback function (memory reference)29

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.30

CHAPTER 6. PROCESS MANAGEMENT 129

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any1
provided attributes must be passed to the host SMS daemon for processing.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_TIMEOUT "pmix.timeout" (int)4
Time in seconds before the specified operation should time out (0 indicating infinite) in5
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent6
the target process from ever exposing its data.7

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)8
Comma-delimited list of algorithms to use for the collective operation.9

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)10
If true, indicates that the requested choice of algorithm is mandatory.11

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host12
environment due to race condition considerations between completion of the operation versus13
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT14
directly in the PMIx server library must take care to resolve the race condition and should avoid15
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not16
created.17

Description18

Nonblocking version of PMIx_Connect . The callback function is called once all processes19
identified in procs have called either PMIx_Connect or its non-blocking version, and the host20
environment has completed any supporting operations required to meet the terms of the PMIx21
definition of connected processes.22

6.3.3 PMIx_Disconnect23

Summary24

Disconnect a previously connected set of processes.25

130 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Disconnect(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo);4

C

IN procs5
Array of proc structures (array of handles)6

IN nprocs7
Number of elements in the procs array (integer)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of element in the info array (integer)12

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.13

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any14
provided attributes must be passed to the host SMS daemon for processing.15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_TIMEOUT "pmix.timeout" (int)17
Time in seconds before the specified operation should time out (0 indicating infinite) in18
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent19
the target process from ever exposing its data.20

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host21
environment due to race condition considerations between completion of the operation versus22
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT23
directly in the PMIx server library must take care to resolve the race condition and should avoid24
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not25
created.26

CHAPTER 6. PROCESS MANAGEMENT 131

Description1

Disconnect a previously connected set of processes. A PMIX_ERR_INVALID_OPERATION2
error will be returned if the specified set of procs was not previously connected via a call to3
PMIx_Connect or its non-blocking form. The function will return once all processes identified4
in procs have called either PMIx_Disconnect or its non-blocking version, and the host5
environment has completed any required supporting operations.6

Advice to users

All processes engaged in a given PMIx_Disconnect operation must provide the identical procs7
array as ordering of entries in the array and the method by which those processes are identified8
(e.g., use of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the9
host environment’s algorithm for uniquely identifying an operation.10

A process can only engage in one disconnect operation involving the identical procs array at a time.11
However, a process can be simultaneously engaged in multiple disconnect operations, each12
involving a different procs array.13

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level14
directives regarding the algorithm to be used for any collective operation involved in the operation,15
timeout constraints, and other options available from the host RM.16

6.3.4 PMIx_Disconnect_nb17

Summary18

Nonblocking PMIx_Disconnect routine.19

Format20

PMIx v1.0 C
pmix_status_t21
PMIx_Disconnect_nb(const pmix_proc_t procs[], size_t nprocs,22

const pmix_info_t info[], size_t ninfo,23
pmix_op_cbfunc_t cbfunc, void *cbdata);24

132 PMIx Standard – Version 2.0 – September 2018

C
IN procs1

Array of proc structures (array of handles)2
IN nprocs3

Number of elements in the procs array (integer)4
IN info5

Array of info structures (array of handles)6
IN ninfo7

Number of element in the info array (integer)8
IN cbfunc9

Callback function pmix_op_cbfunc_t (function reference)10
IN cbdata11

Data to be passed to the callback function (memory reference)12

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.13

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any14
provided attributes must be passed to the host SMS daemon for processing.15

Optional Attributes
The following attributes are optional for host environments that support this operation:16

PMIX_TIMEOUT "pmix.timeout" (int)17
Time in seconds before the specified operation should time out (0 indicating infinite) in18
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent19
the target process from ever exposing its data.20

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host21
environment due to race condition considerations between completion of the operation versus22
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT23
directly in the PMIx server library must take care to resolve the race condition and should avoid24
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not25
created.26

Description27

Nonblocking PMIx_Disconnect routine. The callback function is called once all processes28
identified in procs have called either PMIx_Disconnect_nb or its blocking version, and the29
host environment has completed any required supporting operations.30

CHAPTER 6. PROCESS MANAGEMENT 133

CHAPTER 7

Job Allocation Management and
Reporting

The job management APIs provide an application with the ability to orchestrate its operation in1
partnership with the SMS. Members of this category include the2
PMIx_Allocation_request_nb , PMIx_Job_control_nb , and3
PMIx_Process_monitor_nb APIs.4

7.1 Query5

As the level of interaction between applications and the host SMS grows, so too does the need for6
the application to query the SMS regarding its capabilities and state information. PMIx provides a7
generalized query interface for this purpose, along with a set of standardized attribute keys to8
support a range of requests. This includes requests to determine the status of scheduling queues and9
active allocations, the scope of API and attribute support offered by the SMS, namespaces of active10
jobs, location and information about a job’s processes, and information regarding available11
resources.12

An example use-case for the PMIx_Query_info_nb API is to ensure clean job completion.13
Time-shared systems frequently impose maximum run times when assigning jobs to resource14
allocations. To shut down gracefully, e.g., to write a checkpoint before termination, it is necessary15
for an application to periodically query the resource manager for the time remaining in its16
allocation. This is especially true on systems for which allocation times may be shortened or17
lengthened from the original time limit. Many resource managers provide APIs to dynamically18
obtain this information, but each API is specific to the resource manager.19

PMIx supports this use-case by defining an attribute key (PMIX_TIME_REMAINING) that can be20
used with the PMIx_Query_info_nb interface to obtain the number of seconds remaining in21
the current job allocation. Note that one could alternatively use the22
PMIx_Register_event_handler API to register for an event indicating incipient job23
termination, and then use the PMIx_Job_control_nb API to request that the host SMS24
generate an event a specified amount of time prior to reaching the maximum run time. PMIx25
provides such alternate methods as a means of maximizing the probability of a host system26
supporting at least one method by which the application can obtain the desired service.27

The following APIs support query of various session and environment values.28

134

7.1.1 PMIx_Resolve_peers1

Summary2

Obtain the array of processes within the specified namespace that are executing on a given node.3

Format4

PMIx v1.0 C
pmix_status_t5
PMIx_Resolve_peers(const char *nodename,6

const pmix_nspace_t nspace,7
pmix_proc_t **procs, size_t *nprocs)8

C

IN nodename9
Name of the node to query (string)10

IN nspace11
namespace (string)12

OUT procs13
Array of process structures (array of handles)14

OUT nprocs15
Number of elements in the procs array (integer)16

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.17

Description18

Given a nodename, return the array of processes within the specified nspace that are executing on19
that node. If the nspace is NULL, then all processes on the node will be returned. If the specified20
node does not currently host any processes, then the returned array will be NULL, and nprocs will21
be 0. The caller is responsible for releasing the procs array when done with it. The22
PMIX_PROC_FREE macro is provided for this purpose.23

7.1.2 PMIx_Resolve_nodes24

Summary25

Return a list of nodes hosting processes within the given namespace.26

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 135

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Resolve_nodes(const char *nspace, char **nodelist)3

C

IN nspace4
Namespace (string)5

OUT nodelist6
Comma-delimited list of nodenames (string)7

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.8

Description9

Given a nspace, return the list of nodes hosting processes within that namespace. The returned10
string will contain a comma-delimited list of nodenames. The caller is responsible for releasing the11
string when done with it.12

7.1.3 PMIx_Query_info_nb13

Summary14

Query information about the system in general.15

Format16

PMIx v2.0 C
pmix_status_t17
PMIx_Query_info_nb(pmix_query_t queries[], size_t nqueries,18

pmix_info_cbfunc_t cbfunc, void *cbdata)19

C

IN queries20
Array of query structures (array of handles)21

IN nqueries22
Number of elements in the queries array (integer)23

IN cbfunc24
Callback function pmix_info_cbfunc_t (function reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

Returns one of the following constants:28

136 PMIx Standard – Version 2.0 – September 2018

PMIX_SUCCESS All data has been returned1
PMIX_ERR_NOT_FOUND None of the requested data was available2
PMIX_ERR_PARTIAL_SUCCESS Some of the data has been returned3
PMIX_ERR_NOT_SUPPORTED The host RM does not support this function4

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any5
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is6
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making7
the request.8

Optional Attributes

The following attributes are optional for host environments that support this operation:9

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)10
Request a comma-delimited list of active namespaces.11

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)12
Status of a specified, currently executing job.13

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)14
Request a comma-delimited list of scheduler queues.15

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (TBD)16
Status of a specified scheduler queue.17

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)18
Input namespace of the job whose information is being requested returns (19
pmix_data_array_t) an array of pmix_proc_info_t .20

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)21
Input namespace of the job whose information is being requested returns (22
pmix_data_array_t) an array of pmix_proc_info_t for processes in job on same23
node.24

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)25
Return a comma-delimited list of supported spawn attributes.26

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)27
Return a comma-delimited list of supported debug attributes.28

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)29
Return information on memory usage for the processes indicated in the qualifiers.30

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)31
Constrain the query to local information only.32

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)33

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 137

Report average values.1

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)2
Report minimum and maximum values.3

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)4
String identifier of the allocation whose status is being requested.5

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)6
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.7

8

Description9

Query information about the system in general. This can include a list of active namespaces,10
network topology, etc. Also can be used to query node-specific info such as the list of peers11
executing on a given node. We assume that the host RM will exercise appropriate access control on12
the information.13

NOTE: There is no blocking form of this API as the structures passed to query info differ from14
those for receiving the results.15

The status argument to the callback function indicates if requested data was found or not. An array16
of pmix_info_t will contain each key that was provided and the corresponding value that was17
found. Requests for keys that are not found will return the key paired with a value of type18
PMIX_UNDEF .19

Advice to users

The desire to query a list of attributes supported by the implementation and/or the host environment20
has been expressed and noted. The PMIx community is exploring the possibility and it will likely21
become available in a future release22

138 PMIx Standard – Version 2.0 – September 2018

7.2 Allocation Requests1

This section defines functionality to request new allocations from the RM, and request2
modifications to existing allocations. These are primarily used in the following scenarios:3

• Evolving applications that dynamically request and return resources as they execute4

• Malleable environments where the scheduler redirects resources away from executing5
applications for higher priority jobs or load balancing6

• Resilient applications that need to request replacement resources in the face of failures7

• Rigid jobs where the user has requested a static allocation of resources for a fixed period of time,8
but realizes that they underestimated their required time while executing9

PMIx attempts to address this range of use-cases with a single, flexible API.10

7.2.1 PMIx_Allocation_request_nb11

Summary12

Request an allocation operation from the host resource manager.13

Format14

PMIx v2.0 C
pmix_status_t15
PMIx_Allocation_request_nb(pmix_alloc_directive_t directive,16

pmix_info_t info[], size_t ninfo,17
pmix_info_cbfunc_t cbfunc, void *cbdata);18

C

IN directive19
Allocation directive (handle)20

IN info21
Array of pmix_info_t structures (array of handles)22

IN ninfo23
Number of elements in the info array (integer)24

IN cbfunc25
Callback function pmix_info_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.29

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 139

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any1
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is2
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making3
the request.4

Host environments that implement support for this operation are required to support the following5
attributes:6

PMIX_ALLOC_ID "pmix.alloc.id" (char*)7
Provide a string identifier for this allocation request which can later be used to query status8
of the request.9

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)10
The number of nodes.11

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)12
Number of cpus.13

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)14
Time in seconds.15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)17
Regular expression of the specific nodes.18

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)19
Regular expression of the number of cpus for each node.20

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)21
Regular expression of the specific cpus indicating the cpus involved.22

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)23
Number of Megabytes.24

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)25
Array of pmix_info_t describing requested network resources. If not given as part of an26
pmix_info_t struct that identifies the involved nodes, then the description will be27
applied across all nodes in the requestor’s allocation.28

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)29
Name of the network.30

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)31
Mbits/sec.32

140 PMIx Standard – Version 2.0 – September 2018

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)1
Quality of service level.2

Description3

Request an allocation operation from the host resource manager. Several broad categories are4
envisioned, including the ability to:5

• Request allocation of additional resources, including memory, bandwidth, and compute. This6
should be accomplished in a non-blocking manner so that the application can continue to7
progress while waiting for resources to become available. Note that the new allocation will be8
disjoint from (i.e., not affiliated with) the allocation of the requestor - thus the termination of one9
allocation will not impact the other.10

• Extend the reservation on currently allocated resources, subject to scheduling availability and11
priorities. This includes extending the time limit on current resources, and/or requesting12
additional resources be allocated to the requesting job. Any additional allocated resources will be13
considered as part of the current allocation, and thus will be released at the same time.14

• Return no-longer-required resources to the scheduler. This includes the “loan” of resources back15
to the scheduler with a promise to return them upon subsequent request.16

7.2.2 PMIx_Job_control_nb17

The PMIx_Job_control_nb API enables the application and SMS to coordinate the response18
to failures and other events. This can include requesting termination of the entire job or a subset of19
processes within a job, but can also be used in combination with other PMIx capabilities (e.g.,20
allocation support and event notification) for more nuanced responses. For example, an application21
notified of an incipient over-temperature condition on a node could use the22
PMIx_Allocation_request_nb interface to request replacement nodes while23
simultaneously using the PMIx_Job_control_nb interface to direct that a checkpoint event be24
delivered to all processes in the application. If replacement resources are not available, the25
application might use the PMIx_Job_control_nb interface to request that the job continue at26
a lower power setting, perhaps sufficient to avoid the over-temperature failure.27

The job control API can also be used by an application to register itself as available for preemption28
when operating in an environment such as a cloud or where incentives, financial or otherwise, are29
provided to jobs willing to be preempted. Registration can include attributes indicating how many30
resources are being offered for preemption (e.g., all or only some portion), whether the application31
will require time to prepare for preemption, etc. Jobs that request a warning will receive an event32
notifying them of an impending preemption (possibly including information as to the resources that33
will be taken away, how much time the application will be given prior to being preempted, whether34
the preemption will be a suspension or full termination, etc.) so they have an opportunity to save35
their work. Once the application is ready, it calls the provided event completion callback function to36
indicate that the SMS is free to suspend or terminate it, and can include directives regarding any37
desired restart.38

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 141

Summary1

Request a job control action.2

Format3

PMIx v2.0 C
pmix_status_t4
PMIx_Job_control_nb(const pmix_proc_t targets[], size_t ntargets,5

const pmix_info_t directives[], size_t ndirs,6
pmix_info_cbfunc_t cbfunc, void *cbdata)7

C

IN targets8
Array of proc structures (array of handles)9

IN ntargets10
Number of element in the targets array (integer)11

IN directives12
Array of info structures (array of handles)13

IN ndirs14
Number of element in the directives array (integer)15

IN cbfunc16
Callback function pmix_info_cbfunc_t (function reference)17

IN cbdata18
Data to be passed to the callback function (memory reference)19

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.20

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any21
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is22
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making23
the request.24

Host environments that implement support for this operation are required to support the following25
attributes:26

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)27
Provide a string identifier for this request.28

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)29
Pause the specified processes.30

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)31
Resume (“un-pause”) the specified processes.32

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)33

142 PMIx Standard – Version 2.0 – September 2018

Forcibly terminate the specified processes and cleanup.1

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)2
Send given signal to specified processes.3

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)4
Politely terminate the specified processes.5

Optional Attributes

The following attributes are optional for host environments that support this operation:6

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)7
Cancel the specified request (NULL implies cancel all requests from this requestor).8

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)9
Restart the specified processes using the given checkpoint ID.10

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)11
Checkpoint the specified processes and assign the given ID to it.12

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)13
Use event notification to trigger a process checkpoint.14

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)15
Use the given signal to trigger a process checkpoint.16

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)17
Time in seconds to wait for a checkpoint to complete.18

PMIX_JOB_CTRL_CHECKPOINT_METHOD19
"pmix.jctrl.ckmethod" (pmix_data_array_t)20

Array of pmix_info_t declaring each method and value supported by this application.21

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)22
Regular expression identifying nodes that are to be provisioned.23

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)24
Name of the image that is to be provisioned.25

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)26
Indicate that the job can be pre-empted.27

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 143

Description1

Request a job control action. The targets array identifies the processes to which the requested job2
control action is to be applied. A NULL value can be used to indicate all processes in the caller’s3
namespace. The use of PMIX_RANK_WILDARD can also be used to indicate that all processes in4
the given namespace are to be included.5

The directives are provided as pmix_info_t structures in the directives array. The callback6
function provides a status to indicate whether or not the request was granted, and to provide some7
information as to the reason for any denial in the pmix_info_cbfunc_t array of8
pmix_info_t structures.9

7.3 Process and Job Monitoring10

In addition to external faults, a common problem encountered in HPC applications is a failure to11
make progress due to some internal conflict in the computation. These situations can result in a12
significant waste of resources as the SMS is unaware of the problem, and thus cannot terminate the13
job. Various watchdog methods have been developed for detecting this situation, including14
requiring a periodic “heartbeat” from the application and monitoring a specified file for changes in15
size and/or modification time.16

At the request of SMS vendors and members, a monitoring support interface has been included in17
the PMIx v2 standard. The defined API allows applications to request monitoring, directing what is18
to be monitored, the frequency of the associated check, whether or not the application is to be19
notified (via the event notification subsystem) of stall detection, and other characteristics of the20
operation. In addition, heartbeat and file monitoring methods have been included in the PRI but are21
active only when requested.22

7.3.1 PMIx_Process_monitor_nb23

Summary24

Request that application processes be monitored.25

Format26

PMIx v2.0 C
pmix_status_t27
PMIx_Process_monitor_nb(const pmix_info_t *monitor, pmix_status_t error,28

const pmix_info_t directives[], size_t ndirs,29
pmix_info_cbfunc_t cbfunc, void *cbdata)30

144 PMIx Standard – Version 2.0 – September 2018

C

IN monitor1
info (handle)2

IN error3
status (integer)4

IN directives5
Array of info structures (array of handles)6

IN ndirs7
Number of elements in the directives array (integer)8

IN cbfunc9
Callback function pmix_info_cbfunc_t (function reference)10

IN cbdata11
Data to be passed to the callback function (memory reference)12

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.13

Optional Attributes

The following attributes may be implemented by a PMIx library or by the host environment. If14
supported by the PMIx server library, then the library must not pass the supported attributes to the15
host environment. All attributes not directly supported by the server library must be passed to the16
host environment if it supports this operation, and the library is required to add the17
PMIX_USERID and the PMIX_GRPID attributes of the requesting process:18

PMIX_MONITOR_ID "pmix.monitor.id" (char*)19
Provide a string identifier for this request.20

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)21
Identifier to be canceled (NULL means cancel all monitoring for this process).22

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)23
The application desires to control the response to a monitoring event.24

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)25
Register to have the PMIx server monitor the requestor for heartbeats.26

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)27
Time in seconds before declaring heartbeat missed.28

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)29
Number of heartbeats that can be missed before generating the event.30

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)31
Register to monitor file for signs of life.32

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)33
Monitor size of given file is growing to determine if the application is running.34

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)35

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 145

Monitor time since last access of given file to determine if the application is running.1

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)2
Monitor time since last modified of given file to determine if the application is running.3

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)4
Time in seconds between checking the file.5

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)6
Number of file checks that can be missed before generating the event.7

Description8

Request that application processes be monitored via several possible methods. For example, that9
the server monitor this process for periodic heartbeats as an indication that the process has not10
become “wedged”. When a monitor detects the specified alarm condition, it will generate an event11
notification using the provided error code and passing along any available relevant information. It12
is up to the caller to register a corresponding event handler.13

The monitor argument is an attribute indicating the type of monitor being requested. For example,14
PMIX_MONITOR_FILE to indicate that the requestor is asking that a file be monitored.15

The error argument is the status code to be used when generating an event notification alerting that16
the monitor has been triggered. The range of the notification defaults to17
PMIX_RANGE_NAMESPACE . This can be changed by providing a PMIX_RANGE directive.18

The directives argument characterizes the monitoring request (e.g., monitor file size) and frequency19
of checking to be done20

The cbfunc function provides a status to indicate whether or not the request was granted, and to21
provide some information as to the reason for any denial in the pmix_info_cbfunc_t array of22
pmix_info_t structures.23

7.3.2 PMIx_Heartbeat24

Summary25

Send a heartbeat to the PMIx server library26

Format27

PMIx v2.0 C
void PMIx_Heartbeat(void)28

C

146 PMIx Standard – Version 2.0 – September 2018

Description1

A simplified macro wrapping PMIx_Process_monitor_nb that sends a heartbeat to the2
PMIx server library.3

7.4 Logging4

The logging interface supports posting information by applications and SMS elements to persistent5
storage. This function is not intended for output of computational results, but rather for reporting6
status and saving state information such as inserting computation progress reports into the7
application’s SMS job log or error reports to the local syslog.8

7.4.1 PMIx_Log_nb9

Summary10

Log data to a data service.11

Format12

PMIx v2.0 C
pmix_status_t13
PMIx_Log_nb(const pmix_info_t data[], size_t ndata,14

const pmix_info_t directives[], size_t ndirs,15
pmix_op_cbfunc_t cbfunc, void *cbdata)16

C

IN data17
Array of info structures (array of handles)18

IN ndata19
Number of elements in the data array (size_t)20

IN directives21
Array of info structures (array of handles)22

IN ndirs23
Number of elements in the directives array (size_t)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Return codes are one of the following:29

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 147

PMIX_SUCCESS The logging request is valid and is being processed. The resulting status from1
the operation will be provided in the callback function.2

PMIX_ERR_BAD_PARAM The logging request contains at least one incorrect entry that prevents3
it from being processed. The callback function will not be called.4

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function. The5
callback function will not be called.6

Required Attributes
If the PMIx library does not itself perform this operation, then it is required to pass any attributes7
provided by the client to the host environment for processing. In addition, it must include the8
following attributes in the passed info array:9

PMIX_USERID "pmix.euid" (uint32_t)10
Effective user id.11

PMIX_GRPID "pmix.egid" (uint32_t)12
Effective group id.13

Host environments that implement support for this operation are required to support the following14
attributes:15

PMIX_LOG_STDERR "pmix.log.stderr" (char*)16
Log string to stderr.17

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)18
Log string to stdout.19

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)20
Log data to syslog. Defaults to ERROR priority.21

Optional Attributes
The following attributes are optional for host environments that support this operation:22

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)23
Message blob to be sent somewhere.24

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)25
Log via email based on pmix_info_t containing directives.26

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)27
Comma-delimited list of email addresses that are to receive the message.28

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)29
Subject line for email.30

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)31
Message to be included in email.32

148 PMIx Standard – Version 2.0 – September 2018

Description1

Log data subject to the services offered by the host environment. The data to be logged is provided2
in the data array. The (optional) directives can be used to direct the choice of logging channel. The3
callback function will be executed when the log operation has been completed. The data and4
directives arrays must be maintained until the callback is provided.5

Advice to users

It is strongly recommended that the PMIx_Log_nb API not be used by applications for streaming6
data as it is not a “performant” transport and can perturb the application since it involves the local7
PMIx server and host SMS daemon.8

CHAPTER 7. JOB ALLOCATION MANAGEMENT AND REPORTING 149

CHAPTER 8

Event Notification

This chapter defines the PMIx event notification system. These interfaces are designed to support1
the reporting of events to/from clients and servers, and between library layers within a single2
process.3

8.1 Notification and Management4

PMIx event notification provides an asynchronous out-of-band mechanism for communicating5
events between application processes and/or elements of the SMS. Its uses span a wide range that6
includes fault notification, coordination between multiple programming libraries within a single7
process, and workflow orchestration for non-synchronous programming models. Events can be8
divided into two distinct classes:9

• Job-specific events directly relate to a job executing within the session, such as a debugger10
attachment, process failure within a related job, or events generated by an application process.11
Events in this category are to be immediately delivered to the PMIx server library for relay to the12
related local processes.13

• Environment events indirectly relate to a job but do not specifically target the job itself. This14
category includes SMS-generated events such as Error Check and Correction (ECC) errors,15
temperature excursions, and other non-job conditions that might directly affect a session’s16
resources, but would never include an event generated by an application process. Note that17
although these do potentially impact the session’s jobs, they are not directly tied to those jobs.18
Thus, events in this category are to be delivered to the PMIx server library only upon request.19

Both SMS elements and applications can register for events of either type.20

Advice to PMIx library implementers

Race conditions can cause the registration to come after events of possible interest (e.g., a memory21
ECC event that occurs after start of execution but prior to registration, or an application process22
generating an event prior to another process registering to receive it). SMS vendors are requested to23
cache environment events for some time to mitigate this situation, but are not required to do so.24
However, PMIx implementers are required to cache all events received by the PMIx server library25
and to deliver them to registering clients in the same order in which they were received26

150

Advice to users

Applications must be aware that they may not receive environment events that occur prior to1
registration, depending upon the capabilities of the host SMS.2

The generator of an event can specify the target range for delivery of that event. Thus, the generator3
can choose to limit notification to processes on the local node, processes within the same job as the4
generator, processes within the same allocation, other threads within the same process, only the5
SMS (i.e., not to any application processes), all application processes, or to a custom range based6
on specific process identifiers. Only processes within the given range that register for the provided7
event code will be notified. In addition, the generator can use attributes to direct that the event not8
be delivered to any default event handlers, or to any multi-code handler (as defined below).9

Event notifications provide the process identifier of the source of the event plus the event code and10
any additional information provided by the generator. When an event notification is received by a11
process, the registered handlers are scanned for their event code(s), with matching handlers12
assembled into an event chain for servicing. Note that users can also specify a source range when13
registering an event (using the same range designators described above) to further limit when they14
are to be invoked. When assembled, PMIx event chains are ordered based on both the specificity of15
the event handler and user directives at time of handler registration. By default, handlers are16
grouped into three categories based on the number of event codes that can trigger the callback:17

• single-code handlers are serviced first as they are the most specific. These are handlers that are18
registered against one specific event code.19

• multi-code handlers are serviced once all single-code handlers have completed. The handler will20
be included in the chain upon receipt of an event matching any of the provided codes.21

• default handlers are serviced once all multi-code handlers have completed. These handlers are22
always included in the chain unless the generator specifically excludes them.23

Users can specify the callback order of a handler within its category at the time of registration.24
Ordering can be specified either by providing the relevant returned event handler registration ID or25
using event handler names, if the user specified an event handler name when registering the26
corresponding event. Thus, users can specify that a given handler be executed before or after27
another handler should both handlers appear in an event chain (the ordering is ignored if the other28
handler isn’t included). Note that ordering does not imply immediate relationships. For example,29
multiple handlers registered to be serviced after event handler A will all be executed after A, but are30
not guaranteed to be executed in any particular order amongst themselves.31

In addition, one event handler can be declared as the first handler to be executed in the chain. This32
handler will always be called prior to any other handler, regardless of category, provided the33
incoming event matches both the specified range and event code. Only one handler can be so34
designated — attempts to designate additional handlers as first will return an error. Deregistration35
of the declared first handler will re-open the position for subsequent assignment.36

CHAPTER 8. EVENT NOTIFICATION 151

Similarly, one event handler can be declared as the last handler to be executed in the chain. This1
handler will always be called after all other handlers have executed, regardless of category,2
provided the incoming event matches both the specified range and event code. Note that this3
handler will not be called if the chain is terminated by an earlier handler. Only one handler can be4
designated as last — attempts to designate additional handlers as last will return an error.5
Deregistration of the declared last handler will re-open the position for subsequent assignment.6

Advice to users

Note that the last handler is called after all registered default handlers that match the specified7
range of the incoming event unless a handler prior to it terminates the chain. Thus, if the application8
intends to define a last handler, it should ensure that no default handler aborts the process before it.9

Upon completing its work and prior to returning, each handler must call the event handler10
completion function provided when it was invoked (including a status code plus any information to11
be passed to later handlers) so that the chain can continue being progressed. PMIx automatically12
aggregates the status and any results of each handler (as provided in the completion callback) with13
status from all prior handlers so that each step in the chain has full knowledge of what preceded it.14
An event handler can terminate all further progress along the chain by passing the15
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function.16

8.1.1 PMIx_Register_event_handler17

Summary18

Register an event handler19

Format20

PMIx v2.0 C
void21
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,22

pmix_info_t info[], size_t ninfo,23
pmix_notification_fn_t evhdlr,24
pmix_evhdlr_reg_cbfunc_t cbfunc,25
void *cbdata);26

152 PMIx Standard – Version 2.0 – September 2018

C

IN codes1
Array of status codes (array of pmix_status_t)2

IN ncodes3
Number of elements in the codes array (size_t)4

IN info5
Array of info structures (array of handles)6

IN ninfo7
Number of elements in the info array (size_t)8

IN evhdlr9
Event handler to be called pmix_notification_fn_t (function reference)10

IN cbfunc11
Callback function pmix_evhdlr_reg_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the cbfunc callback function (memory reference)14

Required Attributes

The following attributes are required to be supported by all PMIx libraries:15

PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)16
String name identifying this handler.17

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)18
Invoke this event handler before any other handlers.19

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)20
Invoke this event handler after all other handlers have been called.21

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)22
Invoke this event handler before any other handlers in this category.23

PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)24
Invoke this event handler after all other handlers in this category have been called.25

PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)26
Put this event handler immediately before the one specified in the (char*) value.27

PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)28
Put this event handler immediately after the one specified in the (char*) value.29

PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)30
Prepend this handler to the precedence list within its category.31

PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)32
Append this handler to the precedence list within its category.33

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)34

CHAPTER 8. EVENT NOTIFICATION 153

Array of pmix_proc_t defining range of event notification.1

PMIX_RANGE "pmix.range" (pmix_data_range_t)2
Value for calls to publish/lookup/unpublish or for monitoring event notifications.3

PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)4
Object to be returned whenever the registered callback function cbfunc is invoked. The5
object will only be returned to the process that registered it.6

Host environments that implement support for PMIx event notification are required to support the7
following attributes:8

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)9
The single process that was affected.10

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)11
Array of pmix_proc_t defining affected processes.12

Optional Attributes

Host environments that support PMIx event notification may offer notifications for environmental13
events impacting the job and for SMS events relating to the job. The following attributes are14
optional for host environments that suppport this operation:15

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)16
The RM intends to terminate this session.17

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)18
The RM intends to terminate this job.19

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)20
The RM intends to terminate all processes on this node.21

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)22
The RM intends to terminate just this process.23

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)24
The time in seconds before the RM will execute error response.25

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)26
Do not generate an event when this job normally terminates.27

154 PMIx Standard – Version 2.0 – September 2018

Description1

Register an event handler to report events. Note that the codes being registered do not need to be2
PMIx error constants — any integer value can be registered. This allows for registration of3
non-PMIx events such as those defined by a particular SMS vendor or by an application itself.4

Advice to users

In order to avoid potential conflicts, users are advised to only define codes that lie outside the range5
of the PMIx standard’s error codes. Thus, SMS vendors and application developers should6
constrain their definitions to positive values or negative values beyond the7
PMIX_EXTERNAL_ERR_BASE boundary.8

Upon completion, the callback will receive a status based on the following table:9

PMIX_SUCCESS The event handler was successfully registered - the event handler identifier is10
returned in the callback.11

PMIX_ERR_BAD_PARAM One or more of the directives provided in the info array was12
unrecognized.13

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification,14
or the host SMS does not support notification of the specified event code.15

Advice to users

As previously stated, upon completing its work, and prior to returning, each handler must call the16
event handler completion function provided when it was invoked (including a status code plus any17
information to be passed to later handlers) so that the chain can continue being progressed. An18
event handler can terminate all further progress along the chain by passing the19
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function. Note that the20
parameters passed to the event handler (e.g., the info and results arrays) will cease to be valid once21
the completion function has been called - thus, any information in the incoming parameters that22
will be referenced following the call to the completion function must be copied.23

8.1.2 PMIx_Deregister_event_handler24

Summary25

Deregister an event handler.26

CHAPTER 8. EVENT NOTIFICATION 155

Format1

PMIx v2.0 C
void2
PMIx_Deregister_event_handler(size_t evhdlr_ref,3

pmix_op_cbfunc_t cbfunc,4
void *cbdata);5

C

IN evhdlr_ref6
Event handler ID returned by registration (size_t)7

IN cbfunc8
Callback function to be executed upon completion of operation pmix_op_cbfunc_t9
(function reference)10

IN cbdata11
Data to be passed to the cbfunc callback function (memory reference)12

Description13

Deregister an event handler. If non-NULL, the provided cbfunc will be called to confirm removal14
of the designated handler, including a status code as per the following:15

PMIX_SUCCESS The event handler was successfully deregistered.16
PMIX_ERR_BAD_PARAM The provided evhdlr_ref was unrecognized.17
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification.18

8.1.3 PMIx_Notify_event19

Summary20

Report an event for notification via any registered event handler.21

Format22

PMIx v2.0 C
pmix_status_t23
PMIx_Notify_event(pmix_status_t status,24

const pmix_proc_t *source,25
pmix_data_range_t range,26
pmix_info_t info[], size_t ninfo,27
pmix_op_cbfunc_t cbfunc, void *cbdata);28

156 PMIx Standard – Version 2.0 – September 2018

C
IN status1

Status code of the event (pmix_status_t)2
IN source3

Pointer to a pmix_proc_t identifying the original reporter of the event (handle)4
IN range5

Range across which this notification shall be delivered (pmix_data_range_t)6
IN info7

Array of pmix_info_t structures containing any further info provided by the originator8
of the event (array of handles)9

IN ninfo10
Number of elements in the info array (size_t)11

IN cbfunc12
Callback function to be executed upon completion of operation pmix_op_cbfunc_t13
(function reference)14

IN cbdata15
Data to be passed to the cbfunc callback function (memory reference)16

PMIX_SUCCESS The notification request is valid and is being processed. The callback function17
will be called when the process-local operation is complete and will provide the resulting18
status of that operation. Note that this does not reflect the success or failure of delivering the19
event to any recipients.20

PMIX_ERR_BAD_PARAM The request contains at least one incorrect entry that prevents it from21
being processed. The callback function will not be called.22

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification,23
or in the case of a PMIx server calling the API, the range extended beyond the local node and24
the host SMS environment does not support event notification. The callback function will25
not be called.26

Required Attributes
The following attributes are required to be supported by all PMIx libraries:27

PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)28
Event is not to be delivered to default event handlers.29

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)30
Array of pmix_proc_t defining range of event notification.31

Host environments that implement support for PMIx event notification are required to provide the32
following attributes for all events generated by the environment:33

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)34
The single process that was affected.35

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)36
Array of pmix_proc_t defining affected processes.37

CHAPTER 8. EVENT NOTIFICATION 157

Description1

Report an event for notification via any registered event handler. This function can be called by any2
PMIx process, including application processes, PMIx servers, and SMS elements. The PMIx server3
calls this API to report events it detected itself so that the host SMS daemon distribute and handle4
them, and to pass events given to it by its host down to any attached client processes for processing.5
Examples might include notification of the failure of another process, detection of an impending6
node failure due to rising temperatures, or an intent to preempt the application. Events may be7
locally generated or come from anywhere in the system.8

Host SMS daemons call the API to pass events down to its embedded PMIx server both for9
transmittal to local client processes and for the server’s own internal processing.10

Client application processes can call this function to notify the SMS and/or other application11
processes of an event it encountered. Note that processes are not constrained to report status values12
defined in the official PMIx standard — any integer value can be used. Thus, applications are free13
to define their own internal events and use the notification system for their own internal purposes.14

Advice to users

The callback function will be called upon completion of the notify_event function’s actions.15
At that time, any messages required for executing the operation (e.g., to send the notification to the16
local PMIx server) will have been queued, but may not yet have been transmitted. The caller is17
required to maintain the input data until the callback function has been executed — the sole purpose18
of the callback function is to indicate when the input data is no longer required.19

158 PMIx Standard – Version 2.0 – September 2018

CHAPTER 9

Data Packing and Unpacking

PMIx intentionally does not include support for internode communications in the standard, instead1
relying on its host SMS environment to transfer any needed data and/or requests between nodes.2
These operations frequently involve PMIx-defined public data structures that include binary data.3
Many HPC clusters are homogeneous, and so transferring the structures can be done rather simply.4
However, greater effort is required in heterogeneous environments to ensure binary data is correctly5
transferred. PMIx buffer manipulation functions are provided for this purpose via standardized6
interfaces to ease adoption.7

9.1 Support Macros8

PMIx provides a set of convenience macros for creating, initiating, and releasing data buffers.9

9.1.1 PMIX_DATA_BUFFER_CREATE10

Summary11

Allocate memory for a pmix_data_buffer_t object and initialize it12

Format13

PMIx v2.0 C
PMIX_DATA_BUFFER_CREATE(buffer);14

C

OUT buffer15
Variable to be assigned the pointer to the allocated pmix_data_buffer_t (handle)16

Description17

This macro uses calloc to allocate memory for the buffer and initialize all fields in it18

159

9.1.2 PMIX_DATA_BUFFER_RELEASE1

Summary2

Free a pmix_data_buffer_t object and the data it contains3

Format4

PMIx v2.0 C
PMIX_DATA_BUFFER_RELEASE(buffer);5

C

IN buffer6
Pointer to the pmix_data_buffer_t to be released (handle)7

Description8

Free’s the data contained in the buffer, and then free’s the buffer itself9

9.1.3 PMIX_DATA_BUFFER_CONSTRUCT10

Summary11

Initialize a statically declared pmix_data_buffer_t object12

Format13

PMIx v2.0 C
PMIX_DATA_BUFFER_CONSTRUCT(buffer);14

C

IN buffer15
Pointer to the allocated pmix_data_buffer_t that is to be initialized (handle)16

Description17

Initialize a pre-allocated buffer object18

9.1.4 PMIX_DATA_BUFFER_DESTRUCT19

Summary20

Release the data contained in a pmix_data_buffer_t object21

160 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v2.0 C
PMIX_DATA_BUFFER_DESTRUCT(buffer);2

C

IN buffer3
Pointer to the pmix_data_buffer_t whose data is to be released (handle)4

Description5

Free’s the data contained in a pmix_data_buffer_t object6

9.1.5 PMIX_DATA_BUFFER_LOAD7

Summary8

Load a blob into a pmix_data_buffer_t object9

Format10

PMIx v2.0 C
PMIX_DATA_BUFFER_LOAD(buffer, data, size);11

C

IN buffer12
Pointer to a pre-allocated pmix_data_buffer_t (handle)13

IN data14
Pointer to a blob (char*)15

IN size16
Number of bytes in the blob size_t17

Description18

Load the given data into the provided pmix_data_buffer_t object, usually done in19
preparation for unpacking the provided data. Note that the data is not copied into the buffer - thus,20
the blob must not be released until after operations on the buffer have completed.21

9.1.6 PMIX_DATA_BUFFER_UNLOAD22

Summary23

Unload the data from a pmix_data_buffer_t object24

CHAPTER 9. DATA PACKING AND UNPACKING 161

Format1

PMIx v2.0 C
PMIX_DATA_BUFFER_UNLOAD(buffer, data, size);2

C

IN buffer3
Pointer to the pmix_data_buffer_t whose data is to be extracted (handle)4

OUT data5
Variable to be assigned the pointer to the extracted blob (void*)6

OUT size7
Variable to be assigned the number of bytes in the blob size_t8

Description9

Extract the data in a buffer, assigning the pointer to the data (and the number of bytes in the blob) to10
the provided variables, usually done to transmit the blob to a remote process for unpacking. The11
buffer’s internal pointer will be set to NULL to protect the data upon buffer destruct or release -12
thus, the user is responsible for releasing the blob when done with it.13

9.2 General Routines14

The following routines are provided to support internode transfers in heterogeneous environments.15

9.2.1 PMIx_Data_pack16

Summary17

Pack one or more values of a specified type into a buffer, usually for transmission to another process18

Format19

PMIx v2.0 C
pmix_status_t20
PMIx_Data_pack(const pmix_proc_t *target,21

pmix_data_buffer_t *buffer,22
void *src, int32_t num_vals,23
pmix_data_type_t type);24

162 PMIx Standard – Version 2.0 – September 2018

C

IN target1
Pointer to a pmix_proc_t containing the nspace/rank of the process that will be2
unpacking the final buffer. A NULL value may be used to indicate that the target is based on3
the same PMIx version as the caller. Note that only the target’s nspace is relevant. (handle)4

IN buffer5
Pointer to a pmix_data_buffer_t where the packed data is to be stored (handle)6

IN src7
Pointer to a location where the data resides. Strings are to be passed as (char **) — i.e., the8
caller must pass the address of the pointer to the string as the (void*). This allows the caller9
to pass multiple strings in a single call. (memory reference)10

IN num_vals11
Number of elements pointed to by the src pointer. A string value is counted as a single value12
regardless of length. The values must be contiguous in memory. Arrays of pointers (e.g.,13
string arrays) should be contiguous, although the data pointed to need not be contiguous14
across array entries.(int32_t)15

IN type16
The type of the data to be packed (pmix_data_type_t)17

PMIX_SUCCESS The data has been packed as requested18
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.19
PMIX_ERR_BAD_PARAM The provided buffer or src is NULL20
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this21

implementation22
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation23
PMIX_ERROR General error24

Description25

The pack function packs one or more values of a specified type into the specified buffer. The buffer26
must have already been initialized via the PMIX_DATA_BUFFER_CREATE or27
PMIX_DATA_BUFFER_CONSTRUCT macros — otherwise, PMIx_Data_pack will return an28
error. Providing an unsupported type flag will likewise be reported as an error.29

Note that any data to be packed that is not hard type cast (i.e., not type cast to a specific size) may30
lose precision when unpacked by a non-homogeneous recipient. The PMIx_Data_pack function31
will do its best to deal with heterogeneity issues between the packer and unpacker in such cases.32
Sending a number larger than can be handled by the recipient will return an error code (generated33
upon unpacking) — the error cannot be detected during packing.34

The namespace of the intended recipient of the packed buffer (i.e., the process that will be35
unpacking it) is used solely to resolve any data type differences between PMIx versions. The36
recipient must, therefore, be known to the user prior to calling the pack function so that the PMIx37
library is aware of the version the recipient is using. Note that all processes in a given namespace38

CHAPTER 9. DATA PACKING AND UNPACKING 163

are required to use the same PMIx version — thus, the caller must only know at least one process1
from the target’s namespace.2

9.2.2 PMIx_Data_unpack3

Summary4

Unpack values from a pmix_data_buffer_t5

Format6

PMIx v2.0 C
pmix_status_t7
PMIx_Data_unpack(const pmix_proc_t *source,8

pmix_data_buffer_t *buffer, void *dest,9
int32_t *max_num_values,10
pmix_data_type_t type);11

12
C

IN source13
Pointer to a pmix_proc_t structure containing the nspace/rank of the process that packed14
the provided buffer. A NULL value may be used to indicate that the source is based on the15
same PMIx version as the caller. Note that only the source’s nspace is relevant. (handle)16

IN buffer17
A pointer to the buffer from which the value will be extracted. (handle)18

INOUT dest19
A pointer to the memory location into which the data is to be stored. Note that these values20
will be stored contiguously in memory. For strings, this pointer must be to (char**) to21
provide a means of supporting multiple string operations. The unpack function will allocate22
memory for each string in the array - the caller must only provide adequate memory for the23
array of pointers. (void*)24

INOUT max_num_values25
The number of values to be unpacked — upon completion, the parameter will be set to the26
actual number of values unpacked. In most cases, this should match the maximum number27
provided in the parameters — but in no case will it exceed the value of this parameter. Note28
that unpacking fewer values than are actually available will leave the buffer in an unpackable29
state — the function will return an error code to warn of this condition.(int32_t)30

IN type31
The type of the data to be unpacked — must be one of the PMIx defined data types (32
pmix_data_type_t)33

PMIX_SUCCESS The data has been unpacked as requested34

164 PMIx Standard – Version 2.0 – September 2018

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.1
PMIX_ERR_BAD_PARAM The provided buffer or dest is NULL2
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this3

implementation4
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation5
PMIX_ERROR General error6

Description7

The unpack function unpacks the next value (or values) of a specified type from the given buffer.8
The buffer must have already been initialized via an PMIX_DATA_BUFFER_CREATE or9
PMIX_DATA_BUFFER_CONSTRUCT call (and assumedly filled with some data) — otherwise,10
the unpack_value function will return an error. Providing an unsupported type flag will likewise be11
reported as an error, as will specifying a data type that does not match the type of the next item in12
the buffer. An attempt to read beyond the end of the stored data held in the buffer will also return an13
error.14

NOTE: it is possible for the buffer to be corrupted and that PMIx will think there is a proper15
variable type at the beginning of an unpack region — but that the value is bogus (e.g., just a byte16
field in a string array that so happens to have a value that matches the specified data type flag).17
Therefore, the data type error check is not completely safe.18

Unpacking values is a "nondestructive" process — i.e., the values are not removed from the buffer.19
It is therefore possible for the caller to re-unpack a value from the same buffer by resetting the20
unpack_ptr.21

Warning: The caller is responsible for providing adequate memory storage for the requested data.22
The user must provide a parameter indicating the maximum number of values that can be unpacked23
into the allocated memory. If more values exist in the buffer than can fit into the memory storage,24
then the function will unpack what it can fit into that location and return an error code indicating25
that the buffer was only partially unpacked.26

Note that any data that was not hard type cast (i.e., not type cast to a specific size) when packed may27
lose precision when unpacked by a non-homogeneous recipient. PMIx will do its best to deal with28
heterogeneity issues between the packer and unpacker in such cases. Sending a number larger than29
can be handled by the recipient will return an error code generated upon unpacking — these errors30
cannot be detected during packing.31

The namespace of the process that packed the buffer is used solely to resolve any data type32
differences between PMIx versions. The packer must, therefore, be known to the user prior to33
calling the pack function so that the PMIx library is aware of the version the packer is using. Note34
that all processes in a given namespace are required to use the same PMIx version — thus, the35
caller must only know at least one process from the packer’s namespace.36

CHAPTER 9. DATA PACKING AND UNPACKING 165

9.2.3 PMIx_Data_copy1

Summary2

Copy a data value from one location to another.3

Format4

PMIx v2.0 C
pmix_status_t5
PMIx_Data_copy(void **dest, void *src,6

pmix_data_type_t type);7

C

IN dest8
The address of a pointer into which the address of the resulting data is to be stored.9
(void**)10

IN src11
A pointer to the memory location from which the data is to be copied (handle)12

IN type13
The type of the data to be copied — must be one of the PMIx defined data types. (14
pmix_data_type_t)15

PMIX_SUCCESS The data has been copied as requested16
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.17
PMIX_ERR_BAD_PARAM The provided src or dest is NULL18
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this19

implementation20
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation21
PMIX_ERROR General error22

Description23

Since registered data types can be complex structures, the system needs some way to know how to24
copy the data from one location to another (e.g., for storage in the registry). This function, which25
can call other copy functions to build up complex data types, defines the method for making a copy26
of the specified data type.27

9.2.4 PMIx_Data_print28

Summary29

Pretty-print a data value.30

166 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_Data_print(char **output, char *prefix,3

void *src, pmix_data_type_t type);4

C

IN output5
The address of a pointer into which the address of the resulting output is to be stored.6
(char**)7

IN prefix8
String to be prepended to the resulting output (char*)9

IN src10
A pointer to the memory location of the data value to be printed (handle)11

IN type12
The type of the data value to be printed — must be one of the PMIx defined data types. (13
pmix_data_type_t)14

PMIX_SUCCESS The data has been printed as requested15
PMIX_ERR_BAD_PARAM The provided data type is not recognized.16
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.17

Description18

Since registered data types can be complex structures, the system needs some way to know how to19
print them (i.e., convert them to a string representation). Primarily for debug purposes.20

9.2.5 PMIx_Data_copy_payload21

Summary22

Copy a payload from one buffer to another23

Format24

PMIx v2.0 C
pmix_status_t25
PMIx_Data_copy_payload(pmix_data_buffer_t *dest,26

pmix_data_buffer_t *src);27

CHAPTER 9. DATA PACKING AND UNPACKING 167

C

IN dest1
Pointer to the destination pmix_data_buffer_t (handle)2

IN src3
Pointer to the source pmix_data_buffer_t (handle)4

PMIX_SUCCESS The data has been copied as requested5
PMIX_ERR_BAD_PARAM The src and dest pmix_data_buffer_t types do not match6
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.7

Description8

This function will append a copy of the payload in one buffer into another buffer. Note that this is9
not a destructive procedure — the source buffer’s payload will remain intact, as will any pre-existing10
payload in the destination’s buffer. Only the unpacked portion of the source payload will be copied.11

168 PMIx Standard – Version 2.0 – September 2018

CHAPTER 10

Server-Specific Interfaces

The RM daemon that hosts the PMIx server library interacts with that library in two distinct1
manners. First, PMIx provides a set of APIs by which the host can request specific services from its2
library. This includes generating regular expressions, registering information to be passed to client3
processes, and requesting information on behalf of a remote process. Note that the host always has4
access to all PMIx client APIs - the functions listed below are in addition to those available to a5
PMIx client.6

Second, the host can provide a set of callback functions by which the PMIx server library can pass7
requests upward for servicing by the host. These include notifications of client connection and8
finalize, as well as requests by clients for information and/or services that the PMIx server library9
does not itself provide.10

10.1 Server Support Functions11

The following APIs allow the RM daemon that hosts the PMIx server library to request specific12
services from the PMIx library.13

10.1.1 PMIx_generate_regex14

Summary15

Generate a regular expression representation of the input string.16

Format17

PMIx v1.0 C
pmix_status_t18
PMIx_generate_regex(const char *input, char **regex)19

C
IN input20

String to process (string)21
OUT regex22

Regular expression representation of input (string)23

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.24

169

Description1

Given a comma-separated list of input values, generate a regular expression that can be passed2
down to the PMIx client for parsing. The caller is responsible for free’ing the resulting string.3

If values have leading zero’s, then that is preserved, as are prefix and suffix strings. For example, an4
input string of5
“odin009.org,odin010.org,odin011.org,odin012.org,odin[102-107].org”6
will return a regular expression of “pmix:odin[009-012,102-107].org”7

Advice to users

The returned regular expression will have a “pmix:” at the beginning of the string. This informs8
the PMIx parser that the string was produced using the PRI’s regular expression generator, and thus9
that same plugin should be used for parsing the string10

10.1.2 PMIx_generate_ppn11

Summary12

Generate a regular expression representation of the input string.13

Format14

PMIx v1.0 C
pmix_status_t PMIx_generate_ppn(const char *input, char **ppn)15

C

IN input16
String to process (string)17

OUT regex18
Regular expression representation of input (string)19

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.20

170 PMIx Standard – Version 2.0 – September 2018

Description1

The input is expected to consist of a semicolon-separated list of ranges representing the ranks of2
processes on each node of the job. Thus, an input of "1-4;2-5;8,10,11,12;6,7,9" would generate a3
regex of "pmix:2x(3);8,10-12;6-7,9"4

Advice to users

The returned regular expression will have a “pmix:” at the beginning of the string. This informs the5
PMIx parser that the string was produced using the PRI’s regular expression generator, and thus6
that same plugin should be used for parsing the string7

10.1.3 PMIx_server_register_nspace8

Summary9

Setup the data about a particular namespace.10

Format11

PMIx v1.0 C
pmix_status_t12
PMIx_server_register_nspace(const pmix_nspace_t nspace,13

int nlocalprocs,14
pmix_info_t info[], size_t ninfo,15
pmix_op_cbfunc_t cbfunc, void *cbdata)16

C

IN nspace17
namespace (string)18

IN nlocalprocs19
number of local processes (integer)20

IN info21
Array of info structures (array of handles)22

IN ninfo23
Number of elements in the info array (integer)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.29

CHAPTER 10. SERVER-SPECIFIC INTERFACES 171

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)2
Registration is for this namespace only, do not copy job data.3

Host environments are required to provide the following attributes:4

• for the given namespace:5

– PMIX_NSPACE "pmix.nspace" (char*)6
Namespace of the job.7

– PMIX_JOBID "pmix.jobid" (char*)8
Job identifier assigned by the scheduler.9

– PMIX_NODE_LIST "pmix.nlist" (char*)10
Comma-delimited list of nodes running processes for this job.11

– PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)12
Number of processes in this namespace.13

– PMIX_JOB_SIZE "pmix.job.size" (uint32_t)14
Number of processes in this job.15

– PMIX_MAX_PROCS "pmix.max.size" (uint32_t)16
Maximum number of processes for this job.17

– PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)18
Number of nodes in this namespace.19

– PMIX_NODE_MAP "pmix.nmap" (char*)20
Regular expression of nodes containing processes for this job.21

– PMIX_PROC_MAP "pmix.pmap" (char*)22
Regular expression describing processes on each node within this job.23

• for its own node:24

– PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)25
Number of processes in this job on this node.26

– PMIX_LOCAL_PEERS "pmix.lpeers" (char*)27
Comma-delimited list of ranks on this node within the specified namespace.28

– PMIX_LOCAL_CPUSETS "pmix.lcpus" (char*)29
Colon-delimited cpusets of local peers within the specified namespace.30

• for each process in the given namespace:31

– PMIX_RANK "pmix.rank" (pmix_rank_t)32

172 PMIx Standard – Version 2.0 – September 2018

Process rank within the job.1

– PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)2
Local rank on this node within this job.3

– PMIX_NODE_RANK "pmix.nrank" (uint16_t)4
Process rank on this node spanning all jobs.5

– PMIX_NODEID "pmix.nodeid" (uint32_t)6
Node identifier where the specified process is located, expressed as the node’s index7
(beginning at zero) in an array of nodes comprising the users allocation8

If more than one application is included in the namespace, then the host environment is also9
required to provide the following attributes:10

• for each application:11

– PMIX_APPNUM "pmix.appnum" (uint32_t)12
Application number within the job.13

– PMIX_APPLDR "pmix.aldr" (pmix_rank_t)14
Lowest rank in this application within this job.15

– PMIX_APP_SIZE "pmix.app.size" (uint32_t)16
Number of processes in this application.17

• for each process:18

– PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)19
Process rank within this application.20

Optional Attributes

The following attributes may be provided by host environments:21

• for the given namespace:22

– PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)23
Name of the namespace to use for this PMIx server.24

– PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)25
Rank of this PMIx server26

– PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)27
Starting global rank of this job.28

– PMIX_APPLDR "pmix.aldr" (pmix_rank_t)29
Lowest rank in this application within this job.30

– PMIX_SESSION_ID "pmix.session.id" (uint32_t)31
Session identifier.32

CHAPTER 10. SERVER-SPECIFIC INTERFACES 173

– PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)1
Comma-delimited list of all nodes in this allocation regardless of whether or not they2
currently host processes.3

– PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)4
Number of applications in this job.5

– PMIX_MAPBY "pmix.mapby" (char*)6
Process mapping policy.7

– PMIX_RANKBY "pmix.rankby" (char*)8
Process ranking policy.9

– PMIX_BINDTO "pmix.bindto" (char*)10
Process binding policy.11

• for each application in the given namespace:12

– PMIX_APP_SIZE "pmix.app.size" (uint32_t)13
Number of processes in this application.14

• for its own node:15

– PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)16
Total available physical memory on this node.17

– PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)18
XML representation of local topology using hwloc’s v1.x format.19

– PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)20
XML representation of local topology using hwloc’s v2.x format.21

– PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)22
Lowest rank on this node within this job.23

– PMIX_NODE_SIZE "pmix.node.size" (uint32_t)24
Number of processes across all jobs on this node.25

– PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)26
Array of pmix_proc_t of processes on the specified node.27

• for each process in the given namespace:28

– PMIX_PROCID "pmix.procid" (pmix_proc_t)29
Process identifier30

– PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)31
Process rank spanning across all jobs in this session.32

– PMIX_HOSTNAME "pmix.hname" (char*)33
Name of the host where the specified process is running.34

174 PMIx Standard – Version 2.0 – September 2018

Attributes not directly provided by the host environment may be derived by the PMIx server library1
from other required information and included in the data made available to the server library’s2
clients.3

Description4

Pass job-related information to the PMIx server library for distribution to local client processes.5

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application6
process within the given namespace.7

The PMIx server must register all namespaces that will participate in collective operations with8
local processes. This means that the server must register a namespace even if it will not host any9
local processes from within that namespace if any local process of another namespace might at10
some point perform an operation involving one or more processes from the new namespace. This is11
necessary so that the collective operation can identify the participants and know when it is locally12
complete.13

The caller must also provide the number of local processes that will be launched within this14
namespace. This is required for the PMIx server library to correctly handle collectives as a15
collective operation call can occur before all the local processes have been started.16

Advice to users

The number of local processes for any given namespace is generally fixed at the time of application17
launch. Calls to PMIx_Spawn result in processes launched in their own namespace, not that of18
their parent. However, it is possible for processes to migrate to another node via a call to19
PMIx_Job_control_nb , thus resulting in a change to the number of local processes on both20
the initial node and the node to which the process moved. It is therefore critical that applications21
not migrate processes without first ensuring that PMIx-based collective operations are not in22
progress, and that no such operations be initiated until process migration has completed.23

10.1.4 PMIx_server_deregister_nspace24

Summary25

Deregister a namespace.26

CHAPTER 10. SERVER-SPECIFIC INTERFACES 175

Format1

PMIx v1.0 C
void PMIx_server_deregister_nspace(const pmix_nspace_t nspace,2

pmix_op_cbfunc_t cbfunc, void *cbdata)3

C

IN nspace4
Namespace (string)5

IN cbfunc6
Callback function pmix_op_cbfunc_t (function reference)7

IN cbdata8
Data to be passed to the callback function (memory reference)9

Description10

Deregister the specified nspace and purge all objects relating to it, including any client information11
from that namespace. This is intended to support persistent PMIx servers by providing an12
opportunity for the host RM to tell the PMIx server library to release all memory for a completed13
job.14

10.1.5 PMIx_server_register_client15

Summary16

Register a client process with the PMIx server library.17

Format18

PMIx v1.0 C
pmix_status_t19
PMIx_server_register_client(const pmix_proc_t *proc,20

uid_t uid, gid_t gid,21
void *server_object,22
pmix_op_cbfunc_t cbfunc, void *cbdata)23

C

IN proc24
pmix_proc_t structure (handle)25

IN uid26
user id (integer)27

IN gid28
group id (integer)29

176 PMIx Standard – Version 2.0 – September 2018

IN server_object1
(memory reference)2

IN cbfunc3
Callback function pmix_op_cbfunc_t (function reference)4

IN cbdata5
Data to be passed to the callback function (memory reference)6

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.7

Description8

Register a client process with the PMIx server library.9

Advice to PMIx server hosts
Host environments are required to execute this operation prior to starting the client process. The10
expected user ID and group ID of the child process helps the server library to properly authenticate11
clients as they connect by requiring the two values to match.12

The host server can also, if it desires, provide an object it wishes to be returned when a server13
function is called that relates to a specific process. For example, the host server may have an object14
that tracks the specific client. Passing the object to the library allows the library to provide that15
object to the host server during subsequent calls related to that client, such as a16
pmix_server_client_connected_fn_t function. This allows the host server to access17
the object without performing a lookup based on the client’s namespace and rank.18

10.1.6 PMIx_server_deregister_client19

Summary20

Deregister a client and purge all data relating to it.21

Format22

PMIx v1.0 C
void23
PMIx_server_deregister_client(const pmix_proc_t *proc,24

pmix_op_cbfunc_t cbfunc, void *cbdata)25

C
IN proc26

pmix_proc_t structure (handle)27
IN cbfunc28

Callback function pmix_op_cbfunc_t (function reference)29
IN cbdata30

Data to be passed to the callback function (memory reference)31

CHAPTER 10. SERVER-SPECIFIC INTERFACES 177

Description1

The PMIx_server_deregister_nspace API will delete all client information for that2
namespace. The PMIx server library will automatically perform that operation upon disconnect of3
all local clients. This API is therefore intended primarily for use in exception cases, but can be4
called in non-exception cases if desired.5

10.1.7 PMIx_server_setup_fork6

Summary7

Setup the environment of a child process to be forked by the host.8

Format9

PMIx v1.0 C
pmix_status_t10
PMIx_server_setup_fork(const pmix_proc_t *proc,11

char ***env)12

C

IN proc13
pmix_proc_t structure (handle)14

IN env15
Environment array (array of strings)16

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.17

Description18

Setup the environment of a child process to be forked by the host so it can correctly interact with19
the PMIx server.20

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting the client process.21

The PMIx client needs some setup information so it can properly connect back to the server. This22
function will set appropriate environmental variables for this purpose, and will also provide any23
environmental variables that were specified in the launch command (e.g., via PMIx_Spawn) plus24
other values (e.g., variables required to properly initialize the client’s fabric library).25

178 PMIx Standard – Version 2.0 – September 2018

10.1.8 PMIx_server_dmodex_request1

Summary2

Define a function by which the host server can request modex data from the local PMIx server.3

Format4

PMIx v1.0 C
pmix_status_t PMIx_server_dmodex_request(const pmix_proc_t *proc,5

pmix_dmodex_response_fn_t cbfunc,6
void *cbdata)7

C

IN proc8
pmix_proc_t structure (handle)9

IN cbfunc10
Callback function pmix_dmodex_response_fn_t (function reference)11

IN cbdata12
Data to be passed to the callback function (memory reference)13

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.14

Description15

Define a function by which the host server can request modex data from the local PMIx server.16
Traditional wireup procedures revolve around the per-process posting of data (e.g., location and17
endpoint information) via the PMIx_Put and PMIx_Commit functions followed by a18
PMIx_Fence barrier that globally exchanges the posted information. However, the barrier19
operation represents a signficant time impact at large scale.20

PMIx supports an alternative wireup method known as Direct Modex that replaces the21
barrier-based exchange of all process-posted information with on-demand fetch of a peer’s data. In22
place of the barrier operation, data posted by each process is cached on the local PMIx server.23
When a process requests the information posted by a particular peer, it first checks the local cache24
to see if the data is already available. If not, then the request is passed to the local PMIx server,25
which subsequently requests that its RM host request the data from the RM daemon on the node26
where the specified peer process is located. Upon receiving the request, the RM daemon passes the27
request into its PMIx server library using the PMIx_server_dmodex_request function,28
receiving the response in the provided cbfunc once the indicated process has posted its information.29
The RM daemon then returns the data to the requesting daemon, who subsequently passes the data30
to its PMIx server library for transfer to the requesting client.31

CHAPTER 10. SERVER-SPECIFIC INTERFACES 179

Advice to users

While direct modex allows for faster launch times by eliminating the barrier operation, per-peer1
retrieval of posted information is less efficient. Optimizations can be implemented - e.g., by2
returning posted information from all processes on a node upon first request - but in general direct3
modex remains best suited for sparsely connected applications.4

10.1.9 PMIx_server_setup_application5

Summary6

Provide a function by which the resource manager can request application-specific setup data prior7
to launch of an application.8

Format9

PMIx v2.0 C
pmix_status_t10
PMIx_server_setup_application(const pmix_nspace_t nspace,11

pmix_info_t info[], size_t ninfo,12
pmix_setup_application_cbfunc_t cbfunc,13
void *cbdata)14

C

IN nspace15
namespace (string)16

IN info17
Array of info structures (array of handles)18

IN ninfo19
Number of elements in the info array (integer)20

IN cbfunc21
Callback function pmix_setup_application_cbfunc_t (function reference)22

IN cbdata23
Data to be passed to the cbfunc callback function (memory reference)24

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.25

180 PMIx Standard – Version 2.0 – September 2018

Description1

Provide a function by which the RM can request application-specific setup data (e.g., environmental2
variables, fabric configuration and security credentials) from supporting PMIx server library3
subsystems prior to initiating launch of an application.4

Advice to PMIx server hosts

Host environments are required to execute this operation prior to launching an application.5

This is defined as a non-blocking operation in case contributing subsystems need to perform some6
potentially time consuming action (e.g., query a remote service) before responding. The returned7
data must be distributed by the RM and subsequently delivered to the local PMIx server on each8
node where application processes will execute prior to initiating execution of those processes.9

In the callback function, the returned info array is owned by the PMIx server library and will be10
free’d when the provided cbfunc is called.11

Advice to PMIx library implementers

Support for harvesting of environmental variables and providing of local configuration information12
by the PMIx implementation is optional.13

10.1.10 PMIx_server_setup_local_support14

Summary15

Provide a function by which the local PMIx server can perform any application-specific operations16
prior to spawning local clients of a given application.17

CHAPTER 10. SERVER-SPECIFIC INTERFACES 181

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_server_setup_local_support(const pmix_nspace_t nspace,3

pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata);6

C

IN nspace7
Namespace (string)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN cbfunc13
Callback function pmix_op_cbfunc_t (function reference)14

IN cbdata15
Data to be passed to the callback function (memory reference)16

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.17

Description18

Provide a function by which the local PMIx server can perform any application-specific operations19
prior to spawning local clients of a given application. For example, a network library might need to20
setup the local driver for “instant on” addressing. The data provided in the info array is the data21
provided to there host RM from the a call to PMIx_server_setup_application .22

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application23
processes from the specified namespace.24

182 PMIx Standard – Version 2.0 – September 2018

10.2 Server Function Pointers1

PMIx utilizes a "function-shipping" approach to support for implementing the server-side of the2
protocol. This method allows RMs to implement the server without being burdened with PMIx3
internal details. When a request is received from the client, the corresponding server function will4
be called with the information.5

Any functions not supported by the RM can be indicated by a NULL for the function pointer. Client6
calls to such functions will return a PMIX_ERR_NOT_SUPPORTED status.7

The host RM will provide the function pointers in a pmix_server_module_t structure passed8
to PMIx_server_init . That module structure and associated function references are defined9
in this section.10

Advice to PMIx server hosts

For performance purposes, the host server is required to return as quickly as possible from all11
functions. Execution of the function is thus to be done asynchronously so as to allow the PMIx12
server support library to handle multiple client requests as quickly and scalably as possible.13

All data passed to the host server functions is “owned” by the PMIX server support library and14
MUST NOT be free’d. Data returned by the host server via callback function is owned by the host15
server, which is free to release it upon return from the callback16

10.2.1 pmix_server_module_t Module17

Summary18

List of function pointers that a PMIx server passes to PMIx_server_init during startup.19

Format20

CHAPTER 10. SERVER-SPECIFIC INTERFACES 183

C
typedef struct pmix_server_module_2_0_0_t1

/* v1x interfaces */2
pmix_server_client_connected_fn_t client_connected;3
pmix_server_client_finalized_fn_t client_finalized;4
pmix_server_abort_fn_t abort;5
pmix_server_fencenb_fn_t fence_nb;6
pmix_server_dmodex_req_fn_t direct_modex;7
pmix_server_publish_fn_t publish;8
pmix_server_lookup_fn_t lookup;9
pmix_server_unpublish_fn_t unpublish;10
pmix_server_spawn_fn_t spawn;11
pmix_server_connect_fn_t connect;12
pmix_server_disconnect_fn_t disconnect;13
pmix_server_register_events_fn_t register_events;14
pmix_server_deregister_events_fn_t deregister_events;15
pmix_server_listener_fn_t listener;16
/* v2x interfaces */17
pmix_server_notify_event_fn_t notify_event;18
pmix_server_query_fn_t query;19
pmix_server_tool_connection_fn_t tool_connected;20
pmix_server_log_fn_t log;21
pmix_server_alloc_fn_t allocate;22
pmix_server_job_control_fn_t job_control;23
pmix_server_monitor_fn_t monitor;24

pmix_server_module_t;25

C

10.2.2 pmix_server_client_connected_fn_t26

Summary27

Notify the host server that a client connected to this server.28

Format29

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_client_connected_fn_t)(30

const pmix_proc_t *proc,31
void* server_object,32
pmix_op_cbfunc_t cbfunc,33
void *cbdata)34

184 PMIx Standard – Version 2.0 – September 2018

C

IN proc1
pmix_proc_t structure (handle)2

IN server_object3
object reference (memory reference)4

IN cbfunc5
Callback function pmix_op_cbfunc_t (function reference)6

IN cbdata7
Data to be passed to the callback function (memory reference)8

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.9

Description10

Notify the host environment that a client has called PMIx_Init . Note that the client will be in a11
blocked state until the host server executes the callback function, thus allowing the PMIx server12
support library to release the client. The server_object parameter will be the value of the13
server_object parameter passed to PMIx_server_register_client by the host server14
when registering the connecting client. If provided, an implementation of15
pmix_server_client_connected_fn_t is only required to call the callback function16
designated. A host server can choose to not be notified when clients connect by setting17
client_connected to NULL.18

It is possible that only a subset of the clients in a namespace call PMIx_init . The server’s19
pmix_server_client_connected_fn_t implementation should not depend on being20
called once per rank in a namespace or delay calling the callback function until all ranks have21
connected. However, if a rank makes any PMIx calls, it must first call PMIx_Init and therefore22
the server’s mpix_server_client_connected_fn_t will be called before any other23
server functions specific to the rank.24

Advice to PMIx server hosts

This operation is an opportunity for a host environment to update the status of the ranks it manages.25
It is also a convenient and well defined time to perform initialization necessary to support further26
calls into the server related to that rank.27

10.2.3 pmix_server_client_finalized_fn_t28

Summary29

Notify the host environment that a client called PMIx_Finalize .30

CHAPTER 10. SERVER-SPECIFIC INTERFACES 185

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_client_finalized_fn_t)(2

const pmix_proc_t *proc,3
void* server_object,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata)6

C

IN proc7
pmix_proc_t structure (handle)8

IN server_object9
object reference (memory reference)10

IN cbfunc11
Callback function pmix_op_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the callback function (memory reference)14

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.15

Description16

Notify the host environment that a client called PMIx_Finalize . Note that the client will be in17
a blocked state until the host server executes the callback function, thus allowing the PMIx server18
support library to release the client. The server_object parameter will be the value of the19
server_object parameter passed to PMIx_server_register_client by the host server20
when registering the connecting client. If provided, an implementation of21
pmix_server_client_finalized_fn_t is only required to call the callback function22
designated. A host server can choose to not be notified when clients finalize by setting23
client_finalized to NULL.24

Note that the host server is only being informed that the client has called PMIx_Finalize . The25
client might not have exited. If a client exits without calling PMIx_Finalize , the server support26
library will not call the PMIx_server_client_finalized_fn_t implementation.27

Advice to PMIx server hosts

This operation is an opportunity for a host server to update the status of the tasks it manages. It is28
also a convenient and well defined time to release resources used to support that client.29

186 PMIx Standard – Version 2.0 – September 2018

10.2.4 pmix_server_abort_fn_t1

Summary2

Notify the host environment that a local client called PMIx_Abort .3

Format4

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_abort_fn_t)(5

const pmix_proc_t *proc,6
void *server_object,7
int status,8
const char msg[],9
pmix_proc_t procs[],10
size_t nprocs,11
pmix_op_cbfunc_t cbfunc,12
void *cbdata)13

C

IN proc14
pmix_proc_t structure identifying the process requesting the abort (handle)15

IN server_object16
object reference (memory reference)17

IN status18
exit status (integer)19

IN msg20
exit status message (string)21

IN procs22
Array of pmix_proc_t structures identifying the processes to be terminated (array of23
handles)24

IN nprocs25
Number of elements in the procs array (integer)26

IN cbfunc27
Callback function pmix_op_cbfunc_t (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.31

CHAPTER 10. SERVER-SPECIFIC INTERFACES 187

Description1

A local client called PMIx_Abort . Note that the client will be in a blocked state until the host2
server executes the callback function, thus allowing the PMIx server library to release the client.3
The array of procs indicates which processes are to be terminated. A NULL indicates that all4
processes in the client’s namespace are to be terminated.5

10.2.5 pmix_server_fencenb_fn_t6

Summary7

At least one client called either PMIx_Fence or PMIx_Fence_nb .8

Format9

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_fencenb_fn_t)(10

const pmix_proc_t procs[],11
size_t nprocs,12
const pmix_info_t info[],13
size_t ninfo,14
char *data, size_t ndata,15
pmix_modex_cbfunc_t cbfunc,16
void *cbdata)17

C

IN procs18
Array of pmix_proc_t structures identifying operation participants(array of handles)19

IN nprocs20
Number of elements in the procs array (integer)21

IN info22
Array of info structures (array of handles)23

IN ninfo24
Number of elements in the info array (integer)25

IN data26
(string)27

IN ndata28
(integer)29

IN cbfunc30
Callback function pmix_modex_cbfunc_t (function reference)31

IN cbdata32
Data to be passed to the callback function (memory reference)33

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.34

188 PMIx Standard – Version 2.0 – September 2018

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1

The following attributes are required to be supported by all host environments:2

PMIX_COLLECT_DATA "pmix.collect" (bool)3
Collect data and return it at the end of the operation.4

Optional Attributes

The following attributes are optional for host environments:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (0 indicating infinite) in7
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent8
the target process from ever exposing its data.9

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)10
Comma-delimited list of algorithms to use for the collective operation.11

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)12
If true, indicates that the requested choice of algorithm is mandatory.13

Advice to PMIx server hosts

Host environment are required to return PMIX_ERR_NOT_SUPPORTED if passed an attributed14
marked as PMIX_INFO_REQD that they do not support, even if support for that attribute is15
optional.16

CHAPTER 10. SERVER-SPECIFIC INTERFACES 189

Description1

All local clients in the provided array of procs called either PMIx_Fence or PMIx_Fence_nb .2
In either case, the host server will be called via a non-blocking function to execute the specified3
operation once all participating local processes have contributed. All processes in the specified4
procs array are required to participate in the PMIx_Fence / PMIx_Fence_nb operation. The5
callback is to be executed once every daemon hosting at least one participant has called the host6
server’s pmix_server_fencenb_fn_t function.7

The provided data is to be collectively shared with all PMIx servers involved in the fence operation,8
and returned in the modex cbfunc. A NULL data value indicates that the local processes had no data9
to contribute.10

The array of info structs is used to pass user-requested options to the server. This can include11
directives as to the algorithm to be used to execute the fence operation. The directives are optional12
unless the PMIX_INFO_REQD flag has been set - in such cases, the host RM is required to return13
an error if the directive cannot be met.14

10.2.6 pmix_server_dmodex_req_fn_t15

Summary16

Used by the PMIx server to request its local host contact the PMIx server on the remote node that17
hosts the specified proc to obtain and return a direct modex blob for that proc.18

Format19

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_dmodex_req_fn_t)(20

const pmix_proc_t *proc,21
const pmix_info_t info[],22
size_t ninfo,23
pmix_modex_cbfunc_t cbfunc,24
void *cbdata)25

C

IN proc26
pmix_proc_t structure identifying the process whose data is being requested (handle)27

IN info28
Array of info structures (array of handles)29

IN ninfo30
Number of elements in the info array (integer)31

IN cbfunc32
Callback function pmix_modex_cbfunc_t (function reference)33

190 PMIx Standard – Version 2.0 – September 2018

IN cbdata1
Data to be passed to the callback function (memory reference)2

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.3

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.4

Optional Attributes

The following attributes are optional for host environments that support this operation:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (0 indicating infinite) in7
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent8
the target process from ever exposing its data.9

Description10

Used by the PMIx server to request its local host contact the PMIx server on the remote node that11
hosts the specified proc to obtain and return any information that process posted via calls to12
PMIx_Put and PMIx_Commit .13

The array of info structs is used to pass user-requested options to the server. This can include a14
timeout to preclude an indefinite wait for data that may never become available. The directives are15
optional unless the mandatory flag has been set - in such cases, the host RM is required to return an16
error if the directive cannot be met.17

10.2.7 pmix_server_publish_fn_t18

Summary19

Publish data per the PMIx API specification.20

CHAPTER 10. SERVER-SPECIFIC INTERFACES 191

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_publish_fn_t)(2

const pmix_proc_t *proc,3
const pmix_info_t info[],4
size_t ninfo,5
pmix_op_cbfunc_t cbfunc,6
void *cbdata)7

C

IN proc8
pmix_proc_t structure of the process publishing the data (handle)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.18

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.19
In addition, the following attributes are required to be included in the passed info array:20

PMIX_USERID "pmix.euid" (uint32_t)21
Effective user id.22

PMIX_GRPID "pmix.egid" (uint32_t)23
Effective group id.24

Host environments that implement this entry point are required to support the following attributes:25

PMIX_RANGE "pmix.range" (pmix_data_range_t)26
Value for calls to publish/lookup/unpublish or for monitoring event notifications.27

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)28
Value for calls to PMIx_Publish .29

192 PMIx Standard – Version 2.0 – September 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

Description6

Publish data per the PMIx_Publish specification. The callback is to be executed upon7
completion of the operation. The default data range is left to the host environment, but expected to8
be PMIX_SESSION , and the default persistence PMIX_PERSIST_SESSION or their9
equivalent. These values can be specified by including the respective attributed in the info array.10

The persistence indicates how long the server should retain the data.11

Advice to PMIx server hosts

The host environment is not required to guarantee support for any specific range - i.e., the12
environment does not need to return an error if the data store doesn’t support a specified range so13
long as it is covered by some internally defined range. However, the server must return an error (a)14
if the key is duplicative within the storage range, and (b) if the server does not allow overwriting of15
published info by the original publisher - it is left to the discretion of the host environment to allow16
info-key-based flags to modify this behavior.17

The PMIX_USERID and PMIX_GRPID of the publishing process will be provided to support18
authorization-based access to published information and must be returned on any subsequent19
lookup request.20

10.2.8 pmix_server_lookup_fn_t21

Summary22

Lookup published data.23

CHAPTER 10. SERVER-SPECIFIC INTERFACES 193

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_lookup_fn_t)(2

const pmix_proc_t *proc,3
char **keys,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_lookup_cbfunc_t cbfunc,7
void *cbdata)8

C

IN proc9
pmix_proc_t structure of the process seeking the data (handle)10

IN keys11
(array of strings)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_lookup_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.22
In addition, the following attributes are required to be included in the passed info array:23

PMIX_USERID "pmix.euid" (uint32_t)24
Effective user id.25

PMIX_GRPID "pmix.egid" (uint32_t)26
Effective group id.27

Host environments that implement this entry point are required to support the following attributes:28

PMIX_RANGE "pmix.range" (pmix_data_range_t)29
Value for calls to publish/lookup/unpublish or for monitoring event notifications.30

PMIX_WAIT "pmix.wait" (int)31
Caller requests that the PMIx server wait until at least the specified number of values are32
found (0 indicates all and is the default).33

194 PMIx Standard – Version 2.0 – September 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

Description6

Lookup published data. The host server will be passed a NULL-terminated array of string keys7
identifying the data being requested.8

The array of info structs is used to pass user-requested options to the server. The default data range9
is left to the host environment, but expected to be PMIX_SESSION . This can include a wait flag to10
indicate that the server should wait for all data to become available before executing the callback11
function, or should immediately callback with whatever data is available. In addition, a timeout can12
be specified on the wait to preclude an indefinite wait for data that may never be published.13

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support14
authorization-based access to published information. The host environment is not required to15
guarantee support for any specific range - i.e., the environment does not need to return an error if16
the data store doesn’t support a specified range so long as it is covered by some internally defined17
range.18

10.2.9 pmix_server_unpublish_fn_t19

Summary20

Delete data from the data store.21

CHAPTER 10. SERVER-SPECIFIC INTERFACES 195

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_unpublish_fn_t)(2

const pmix_proc_t *proc,3
char **keys,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata)8

C

IN proc9
pmix_proc_t structure identifying the process making the request (handle)10

IN keys11
(array of strings)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.22
In addition, the following attributes are required to be included in the passed info array:23

PMIX_USERID "pmix.euid" (uint32_t)24
Effective user id.25

PMIX_GRPID "pmix.egid" (uint32_t)26
Effective group id.27

Host environments that implement this entry point are required to support the following attributes:28

PMIX_RANGE "pmix.range" (pmix_data_range_t)29
Value for calls to publish/lookup/unpublish or for monitoring event notifications.30

196 PMIx Standard – Version 2.0 – September 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

Description6

Delete data from the data store. The host server will be passed a NULL-terminated array of string7
keys, plus potential directives such as the data range within which the keys should be deleted. The8
default data range is left to the host environment, but expected to be PMIX_SESSION . The9
callback is to be executed upon completion of the delete procedure.10

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support11
authorization-based access to published information. The host environment is not required to12
guarantee support for any specific range - i.e., the environment does not need to return an error if13
the data store doesn’t support a specified range so long as it is covered by some internally defined14
range.15

10.2.10 pmix_server_spawn_fn_t16

Summary17

Spawn a set of applications/processes as per the PMIx_Spawn API.18

CHAPTER 10. SERVER-SPECIFIC INTERFACES 197

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_spawn_fn_t)(2

const pmix_proc_t *proc,3
const pmix_info_t job_info[],4
size_t ninfo,5
const pmix_app_t apps[],6
size_t napps,7
pmix_spawn_cbfunc_t cbfunc,8
void *cbdata)9

C

IN proc10
pmix_proc_t structure of the process making the request (handle)11

IN job_info12
Array of info structures (array of handles)13

IN ninfo14
Number of elements in the jobinfo array (integer)15

IN apps16
Array of pmix_app_t structures (array of handles)17

IN napps18
Number of elements in the apps array (integer)19

IN cbfunc20
Callback function pmix_spawn_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.24

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.25
In addition, the following attributes are required to be included in the passed info array:26

PMIX_USERID "pmix.euid" (uint32_t)27
Effective user id.28

PMIX_GRPID "pmix.egid" (uint32_t)29
Effective group id.30

198 PMIx Standard – Version 2.0 – September 2018

Host environments that provide this module entry point are required to pass the PMIX_SPAWNED1
and PMIX_PARENT_ID attributes to all PMIx servers launching new child processes so those2
values can be returned to clients upon connection to the PMIx server. In addition, they are required3
to support the following attributes when present in either the job_info or the info array of an4
element of the apps array:5

PMIX_WDIR "pmix.wdir" (char*)6
Working directory for spawned processes.7

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)8
Set the application’s current working directory to the session working directory assigned by9
the RM.10

PMIX_PREFIX "pmix.prefix" (char*)11
Prefix to use for starting spawned processes.12

PMIX_HOST "pmix.host" (char*)13
Comma-delimited list of hosts to use for spawned processes.14

PMIX_HOSTFILE "pmix.hostfile" (char*)15
Hostfile to use for spawned processes.16

Optional Attributes

The following attributes are optional for host environments that support this operation:17

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)18
Hostfile listing hosts to add to existing allocation.19

PMIX_ADD_HOST "pmix.addhost" (char*)20
Comma-delimited list of hosts to add to the allocation.21

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)22
Preload binaries onto nodes.23

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)24
Comma-delimited list of files to pre-position on nodes.25

PMIX_PERSONALITY "pmix.pers" (char*)26
Name of personality to use.27

PMIX_MAPPER "pmix.mapper" (char*)28
Mapping mechanism to use for placing spawned processes.29

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)30
Display process mapping upon spawn.31

PMIX_PPR "pmix.ppr" (char*)32
Number of processes to spawn on each identified resource.33

CHAPTER 10. SERVER-SPECIFIC INTERFACES 199

PMIX_MAPBY "pmix.mapby" (char*)1
Process mapping policy.2

PMIX_RANKBY "pmix.rankby" (char*)3
Process ranking policy.4

PMIX_BINDTO "pmix.bindto" (char*)5
Process binding policy.6

PMIX_NON_PMI "pmix.nonpmi" (bool)7
Spawned processes will not call PMIx_Init .8

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)9
Spawned process rank that is to receive stdin.10

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)11
Forward this process’s stdin to the designated process.12

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)13
Forward stdout from spawned processes to this process.14

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)15
Forward stderr from spawned processes to this process.16

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)17
Spawned application consists of debugger daemons.18

PMIX_TAG_OUTPUT "pmix.tagout" (bool)19
Tag application output with the identity of the source process.20

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)21
Timestamp output from applications.22

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)23
Merge stdout and stderr streams from application processes.24

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)25
Output application output to the specified file.26

PMIX_INDEX_ARGV "pmix.indxargv" (bool)27
Mark the argv with the rank of the process.28

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)29
Number of cpus to assign to each rank.30

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)31
Do not place processes on the head node.32

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)33
Do not oversubscribe the cpus.34

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)35

200 PMIx Standard – Version 2.0 – September 2018

Report bindings of the individual processes.1

PMIX_CPU_LIST "pmix.cpulist" (char*)2
List of cpus to use for this job.3

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)4
Application supports recoverable operations.5

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)6
Application is continuous, all failed processes should be immediately restarted.7

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)8
Maximum number of times to restart a job.9

PMIX_TIMEOUT "pmix.timeout" (int)10
Time in seconds before the specified operation should time out (0 indicating infinite) in11
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent12
the target process from ever exposing its data.13

Description14

Spawn a set of applications/processes as per the PMIx_Spawn API. Note that applications are not15
required to be MPI or any other programming model. Thus, the host server cannot make any16
assumptions as to their required support. The callback function is to be executed once all processes17
have been started. An error in starting any application or process in this request shall cause all18
applications and processes in the request to be terminated, and an error returned to the originating19
caller.20

Note that a timeout can be specified in the job_info array to indicate that failure to start the21
requested job within the given time should result in termination to avoid hangs.22

10.2.11 pmix_server_connect_fn_t23

Summary24

Record the specified processes as connected.25

CHAPTER 10. SERVER-SPECIFIC INTERFACES 201

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_connect_fn_t)(2

const pmix_proc_t procs[],3
size_t nprocs,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata)8

C

IN procs9
Array of pmix_proc_t structures identifying participants (array of handles)10

IN nprocs11
Number of elements in the procs array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.22

Optional Attributes

The following attributes are optional for host environments that support this operation:23

PMIX_TIMEOUT "pmix.timeout" (int)24
Time in seconds before the specified operation should time out (0 indicating infinite) in25
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent26
the target process from ever exposing its data.27

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)28
Comma-delimited list of algorithms to use for the collective operation.29

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)30
If true, indicates that the requested choice of algorithm is mandatory.31

202 PMIx Standard – Version 2.0 – September 2018

Description1

Record the processes specified by the procs array as connected as per the PMIx definition. The2
callback is to be executed once every daemon hosting at least one participant has called the host3
server’s pmix_server_connect_fn_t function, and the host environment has completed any4
supporting operations required to meet the terms of the PMIx definition of connected processes.5

Advice to PMIx server hosts

The PMIx server library will call this function once all local participants have called6
PMIx_Connect or its non-blocking form with the same array of participants.7

10.2.12 pmix_server_disconnect_fn_t8

Summary9

Disconnect a previously connected set of processes.10

Format11

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_disconnect_fn_t)(12

const pmix_proc_t procs[],13
size_t nprocs,14
const pmix_info_t info[],15
size_t ninfo,16
pmix_op_cbfunc_t cbfunc,17
void *cbdata)18

C
IN procs19

Array of pmix_proc_t structures identifying participants (array of handles)20
IN nprocs21

Number of elements in the procs array (integer)22
IN info23

Array of info structures (array of handles)24
IN ninfo25

Number of elements in the info array (integer)26
IN cbfunc27

Callback function pmix_op_cbfunc_t (function reference)28
IN cbdata29

Data to be passed to the callback function (memory reference)30

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.31

CHAPTER 10. SERVER-SPECIFIC INTERFACES 203

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1

Optional Attributes

The following attributes are optional for host environments that support this operation:2

PMIX_TIMEOUT "pmix.timeout" (int)3
Time in seconds before the specified operation should time out (0 indicating infinite) in4
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent5
the target process from ever exposing its data.6

Description7

Disconnect a previously connected set of processes. The callback is to be executed once every8
daemon hosting at least one participant has called the host server’s has called the9
pmix_server_disconnect_fn_t function, and the host environment has completed any10
required supporting operations.11

Advice to PMIx server hosts

A PMIX_ERR_INVALID_OPERATION error must be returned if the specified set of procs was12
not previously connected via a call to the pmix_server_connect_fn_t function.13

The PMIx server library will call this function once all local participants have called14
PMIx_Disconnect or its non-blocking form with the same array of participants.15

10.2.13 pmix_server_register_events_fn_t16

Summary17

Register to receive notifications for the specified events.18

204 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_register_events_fn_t)(2

pmix_status_t *codes,3
size_t ncodes,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata)8

C

IN codes9
Array of pmix_status_t values (array of handles)10

IN ncodes11
Number of elements in the codes array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.22
In addition, the following attributes are required to be included in the passed info array:23

PMIX_USERID "pmix.euid" (uint32_t)24
Effective user id.25

PMIX_GRPID "pmix.egid" (uint32_t)26
Effective group id.27

CHAPTER 10. SERVER-SPECIFIC INTERFACES 205

Description1

Register to receive notifications for the specified status codes. The info array included in this API is2
reserved for possible future directives to further steer notification.3

Advice to PMIx library implementers

The PMIx server library must track all client registrations for subsequent notification. This module4
function shall only be called when:5

• the client has requested notification of an environmental code (i.e., a PMIx code in the range6
between PMIX_ERR_SYS_BASE and PMIX_ERR_SYS_OTHER , inclusive) or a code that lies7
outside the defined PMIx range of constants; and8

• the PMIx server library has not previously requested notification of that code - i.e., the host9
environment is to be contacted only once a given unique code value10

Advice to PMIx server hosts

The host environment is required to pass to its PMIx server library all non-environmental events11
that directly relate to a registered namespace without the PMIx server library explicitly requesting12
them. Environmental events are to be translated to their nearest PMIx equivalent code as defined in13
the range between PMIX_ERR_SYS_BASE and PMIX_ERR_SYS_OTHER (inclusive).14

10.2.14 pmix_server_deregister_events_fn_t15

Summary16

Deregister to receive notifications for the specified events.17

206 PMIx Standard – Version 2.0 – September 2018

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_deregister_events_fn_t)(2

pmix_status_t *codes,3
size_t ncodes,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata)6

C

IN codes7
Array of pmix_status_t values (array of handles)8

IN ncodes9
Number of elements in the codes array (integer)10

IN cbfunc11
Callback function pmix_op_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the callback function (memory reference)14

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.15

Description16

Deregister to receive notifications for the specified events to which the PMIx server has previously17
registered.18

Advice to PMIx library implementers

The PMIx server library must track all client registrations. This module function shall only be19
called when:20

• the library is deregistering environmental codes (i.e., a PMIx codes in the range between21
PMIX_ERR_SYS_BASE and PMIX_ERR_SYS_OTHER , inclusive) or codes that lies outside22
the defined PMIx range of constants; and23

• no client (including the server library itself) remains registered for notifications on any included24
code - i.e., a code should be included in this call only when no registered notifications against it25
remain.26

10.2.15 pmix_server_notify_event_fn_t27

Summary28

Notify the specified processes of an event.29

CHAPTER 10. SERVER-SPECIFIC INTERFACES 207

Format1

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_notify_event_fn_t)(pmix_status_t code,2

const pmix_proc_t *source,3
pmix_data_range_t range,4
pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata);8

C

IN code9
The pmix_status_t event code being referenced structure (handle)10

IN source11
pmix_proc_t of process that generated the event (handle)12

IN range13
pmix_data_range_t range over which the event is to be distributed (handle)14

IN info15
Optional array of pmix_info_t structures containing additional information on the event16
(array of handles)17

IN ninfo18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_op_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.24

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.25

Host environments that provide this module entry point are required to support the following26
attributes:27

PMIX_RANGE "pmix.range" (pmix_data_range_t)28
Value for calls to publish/lookup/unpublish or for monitoring event notifications.29

208 PMIx Standard – Version 2.0 – September 2018

Description1

Notify the specified processes (described through a combination of range and attributes provided in2
the info array) of an event generated either by the PMIx server itself or by one of its local clients.3
The process generating the event is provided in the source parameter, and any further descriptive4
information is included in the info array.5

Advice to PMIx server hosts

The callback function is to be executed once the host environment no longer requires that the PMIx6
server library maintain the provided data structures. It does not necessarily indicate that the event7
has been delivered to any process, nor that the event has been distributed for delivery8

10.2.16 pmix_server_listener_fn_t9

Summary10

Register a socket the host server can monitor for connection requests.11

Format12

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_listener_fn_t)(13

int listening_sd,14
pmix_connection_cbfunc_t cbfunc,15
void *cbdata)16

C
IN incoming_sd17

(integer)18
IN cbfunc19

Callback function pmix_connection_cbfunc_t (function reference)20
IN cbdata21

(memory reference)22

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.23

Description24

Register a socket the host environment can monitor for connection requests, harvest them, and then25
call the PMIx server library’s internal callback function for further processing. A listener thread is26
essential to efficiently harvesting connection requests from large numbers of local clients such as27
occur when running on large SMPs. The host server listener is required to call accept on the28
incoming connection request, and then pass the resulting socket to the provided cbfunc. A NULL29
for this function will cause the internal PMIx server to spawn its own listener thread.30

CHAPTER 10. SERVER-SPECIFIC INTERFACES 209

10.2.17 pmix_server_query_fn_t1

Summary2

Query information from the resource manager.3

Format4

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_query_fn_t)(5

pmix_proc_t *proct,6
pmix_query_t *queries, size_t nqueries,7
pmix_info_cbfunc_t cbfunc,8
void *cbdata)9

C

IN proct10
pmix_proc_t structure of the requesting process (handle)11

IN queries12
Array of pmix_query_t structures (array of handles)13

IN nqueries14
Number of elements in the queries array (integer)15

IN cbfunc16
Callback function pmix_info_cbfunc_t (function reference)17

IN cbdata18
Data to be passed to the callback function (memory reference)19

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.20

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.21
In addition, the following attributes are required to be included in the passed info array:22

PMIX_USERID "pmix.euid" (uint32_t)23
Effective user id.24

PMIX_GRPID "pmix.egid" (uint32_t)25
Effective group id.26

210 PMIx Standard – Version 2.0 – September 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)2
Request a comma-delimited list of active namespaces.3

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)4
Status of a specified, currently executing job.5

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)6
Request a comma-delimited list of scheduler queues.7

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (TBD)8
Status of a specified scheduler queue.9

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)10
Input namespace of the job whose information is being requested returns (11
pmix_data_array_t) an array of pmix_proc_info_t .12

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)13
Input namespace of the job whose information is being requested returns (14
pmix_data_array_t) an array of pmix_proc_info_t for processes in job on same15
node.16

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)17
Return a comma-delimited list of supported spawn attributes.18

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)19
Return a comma-delimited list of supported debug attributes.20

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)21
Return information on memory usage for the processes indicated in the qualifiers.22

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)23
Constrain the query to local information only.24

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)25
Report average values.26

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)27
Report minimum and maximum values.28

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)29
String identifier of the allocation whose status is being requested.30

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)31
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.32

33

CHAPTER 10. SERVER-SPECIFIC INTERFACES 211

Description1

Query information from the host environment. The query will include the namespace/rank of the2
process that is requesting the info, an array of pmix_query_t describing the request, and a3
callback function/data for the return.4

Advice to PMIx library implementers

The PMIx server library should not block in this function as the host environment may, depending5
upon the information being requested, require significant time to respond.6

10.2.18 pmix_server_tool_connection_fn_t7

Summary8

Register that a tool has connected to the server.9

Format10

PMIx v2.0 C
typedef void (*pmix_server_tool_connection_fn_t)(11

pmix_info_t info[], size_t ninfo,12
pmix_tool_connection_cbfunc_t cbfunc,13
void *cbdata)14

C

IN info15
Array of pmix_info_t structures (array of handles)16

IN ninfo17
Number of elements in the info array (integer)18

IN cbfunc19
Callback function pmix_tool_connection_cbfunc_t (function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

Required Attributes

PMIx libraries are required to pass the following attributes in the info array:23

PMIX_USERID "pmix.euid" (uint32_t)24
Effective user id.25

PMIX_GRPID "pmix.egid" (uint32_t)26
Effective group id.27

212 PMIx Standard – Version 2.0 – September 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)2
Forward stdout from spawned processes to this process.3

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)4
Forward stderr from spawned processes to this process.5

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)6
Forward this process’s stdin to the designated process.7

Description8

Register that a tool has connected to the server, and request that the tool be assigned a9
namespace/rank identifier for further interactions. The pmix_info_t array is used to pass10
qualifiers for the connection request, including the effective uid and gid of the calling tool for11
authentication purposes.12

Advice to PMIx server hosts

The host environment is solely responsible for authenticating and authorizing the connection, and13
for authorizing all subsequent tool requests.14

10.2.19 pmix_server_log_fn_t15

Summary16

Log data on behalf of a client.17

CHAPTER 10. SERVER-SPECIFIC INTERFACES 213

Format1

PMIx v2.0 C
typedef void (*pmix_server_log_fn_t)(2

const pmix_proc_t *client,3
const pmix_info_t data[], size_t ndata,4
const pmix_info_t directives[], size_t ndirs,5
pmix_op_cbfunc_t cbfunc, void *cbdata)6

C

IN client7
pmix_proc_t structure (handle)8

IN data9
Array of info structures (array of handles)10

IN ndata11
Number of elements in the data array (integer)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the directives array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.21
In addition, the following attributes are required to be included in the passed info array:22

PMIX_USERID "pmix.euid" (uint32_t)23
Effective user id.24

PMIX_GRPID "pmix.egid" (uint32_t)25
Effective group id.26

Host environments that provide this module entry point are required to support the following27
attributes:28

PMIX_LOG_STDERR "pmix.log.stderr" (char*)29
Log string to stderr.30

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)31
Log string to stdout.32

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)33
Log data to syslog. Defaults to ERROR priority.34

214 PMIx Standard – Version 2.0 – September 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)2
Message blob to be sent somewhere.3

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)4
Log via email based on pmix_info_t containing directives.5

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)6
Comma-delimited list of email addresses that are to receive the message.7

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)8
Subject line for email.9

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)10
Message to be included in email.11

Description12

Log data on behalf of a client. This function is not intended for output of computational results, but13
rather for reporting status and error messages.14

10.2.20 pmix_server_alloc_fn_t15

Summary16

Request allocation operations on behalf of a client.17

CHAPTER 10. SERVER-SPECIFIC INTERFACES 215

Format1

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_alloc_fn_t)(2

const pmix_proc_t *client,3
pmix_alloc_directive_t directive,4
const pmix_info_t data[], size_t ndata,5
pmix_info_cbfunc_t cbfunc, void *cbdata)6

C

IN client7
pmix_proc_t structure of process making request (handle)8

IN directive9
Specific action being requested (pmix_alloc_directive_t)10

IN data11
Array of info structures (array of handles)12

IN ndata13
Number of elements in the data array (integer)14

IN cbfunc15
Callback function pmix_info_cbfunc_t (function reference)16

IN cbdata17
Data to be passed to the callback function (memory reference)18

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.19

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.20
In addition, the following attributes are required to be included in the passed info array:21

PMIX_USERID "pmix.euid" (uint32_t)22
Effective user id.23

PMIX_GRPID "pmix.egid" (uint32_t)24
Effective group id.25

Host environments that provide this module entry point are required to support the following26
attributes:27

PMIX_ALLOC_ID "pmix.alloc.id" (char*)28
Provide a string identifier for this allocation request which can later be used to query status29
of the request.30

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)31
The number of nodes.32

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)33
Number of cpus.34

216 PMIx Standard – Version 2.0 – September 2018

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)1
Time in seconds.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)4
Regular expression of the specific nodes.5

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)6
Regular expression of the number of cpus for each node.7

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)8
Regular expression of the specific cpus indicating the cpus involved.9

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)10
Number of Megabytes.11

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)12
Array of pmix_info_t describing requested network resources. If not given as part of an13
pmix_info_t struct that identifies the involved nodes, then the description will be14
applied across all nodes in the requestor’s allocation.15

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)16
Name of the network.17

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)18
Mbits/sec.19

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)20
Quality of service level.21

CHAPTER 10. SERVER-SPECIFIC INTERFACES 217

Description1

Request new allocation or modifications to an existing allocation on behalf of a client. Several2
broad categories are envisioned, including the ability to:3

• Request allocation of additional resources, including memory, bandwidth, and compute for an4
existing allocation. Any additional allocated resources will be considered as part of the current5
allocation, and thus will be released at the same time.6

• Request a new allocation of resources. Note that the new allocation will be disjoint from (i.e., not7
affiliated with) the allocation of the requestor - thus the termination of one allocation will not8
impact the other.9

• Extend the reservation on currently allocated resources, subject to scheduling availability and10
priorities.11

• Return no-longer-required resources to the scheduler. This includes the loan of resources back to12
the scheduler with a promise to return them upon subsequent request.13

The callback function provides a status to indicate whether or not the request was granted, and to14
provide some information as to the reason for any denial in the pmix_info_cbfunc_t array of15
pmix_info_t structures.16

10.2.21 pmix_server_job_control_fn_t17

Summary18

Execute a job control action on behalf of a client.19

Format20

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_job_control_fn_t)(21

const pmix_proc_t *requestor,22
const pmix_proc_t targets[], size_t ntargets,23
const pmix_info_t directives[], size_t ndirs,24
pmix_info_cbfunc_t cbfunc, void *cbdata)25

C

IN requestor26
pmix_proc_t structure of requesting process (handle)27

IN targets28
Array of proc structures (array of handles)29

IN ntargets30
Number of elements in the targets array (integer)31

IN directives32
Array of info structures (array of handles)33

218 PMIx Standard – Version 2.0 – September 2018

IN ndirs1
Number of elements in the info array (integer)2

IN cbfunc3
Callback function pmix_op_cbfunc_t (function reference)4

IN cbdata5
Data to be passed to the callback function (memory reference)6

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.7

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.8
In addition, the following attributes are required to be included in the passed info array:9

PMIX_USERID "pmix.euid" (uint32_t)10
Effective user id.11

PMIX_GRPID "pmix.egid" (uint32_t)12
Effective group id.13

Host environments that provide this module entry point are required to support the following14
attributes:15

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)16
Provide a string identifier for this request.17

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)18
Pause the specified processes.19

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)20
Resume (“un-pause”) the specified processes.21

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)22
Forcibly terminate the specified processes and cleanup.23

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)24
Send given signal to specified processes.25

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)26
Politely terminate the specified processes.27

CHAPTER 10. SERVER-SPECIFIC INTERFACES 219

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)2
Cancel the specified request (NULL implies cancel all requests from this requestor).3

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)4
Restart the specified processes using the given checkpoint ID.5

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)6
Checkpoint the specified processes and assign the given ID to it.7

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)8
Use event notification to trigger a process checkpoint.9

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)10
Use the given signal to trigger a process checkpoint.11

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)12
Time in seconds to wait for a checkpoint to complete.13

PMIX_JOB_CTRL_CHECKPOINT_METHOD14
"pmix.jctrl.ckmethod" (pmix_data_array_t)15

Array of pmix_info_t declaring each method and value supported by this application.16

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)17
Regular expression identifying nodes that are to be provisioned.18

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)19
Name of the image that is to be provisioned.20

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)21
Indicate that the job can be pre-empted.22

Description23

Execute a job control action on behalf of a client. The targets array identifies the processes to24
which the requested job control action is to be applied. A NULL value can be used to indicate all25
processes in the caller’s namespace. The use of PMIX_RANK_WILDARD can also be used to26
indicate that all processes in the given namespace are to be included.27

The directives are provided as pmix_info_t structures in the directives array. The callback28
function provides a status to indicate whether or not the request was granted, and to provide some29
information as to the reason for any denial in the pmix_info_cbfunc_t array of30
pmix_info_t structures.31

220 PMIx Standard – Version 2.0 – September 2018

10.2.22 pmix_server_monitor_fn_t1

Summary2

Request that a client be monitored for activity.3

Format4

PMIx v2.0 C
/* Request that a client be monitored for activity */5
typedef pmix_status_t (*pmix_server_monitor_fn_t)(6

const pmix_proc_t *requestor,7
const pmix_info_t *monitor, pmix_status_t error,8
const pmix_info_t directives[], size_t ndirs,9
pmix_info_cbfunc_t cbfunc, void *cbdata);10

C

IN requestor11
pmix_proc_t structure of requesting process (handle)12

IN monitor13
pmix_info_t identifying the type of monitor being requested (handle)14

IN error15
Status code to use in generating event if alarm triggers (integer)16

IN directives17
Array of info structures (array of handles)18

IN ndirs19
Number of elements in the info array (integer)20

IN cbfunc21
Callback function pmix_op_cbfunc_t (function reference)22

IN cbdata23
Data to be passed to the callback function (memory reference)24

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. This entry25
point is only called for monitoring requests that are not directly supported by the PRI.26

Required Attributes

If supported by the PMIx server library, then the library must not pass any supported attributes to27
the host environment. All attributes not directly supported by the server library must be passed to28
the host environment if it provides this module entry. In addition, the following attributes are29
required to be included in the passed info array:30

PMIX_USERID "pmix.euid" (uint32_t)31
Effective user id.32

PMIX_GRPID "pmix.egid" (uint32_t)33

CHAPTER 10. SERVER-SPECIFIC INTERFACES 221

Effective group id.1

Host environments are not required to support any specific monitoring attributes.2

Optional Attributes

The following attributes may be implemented by a host environment.3

PMIX_MONITOR_ID "pmix.monitor.id" (char*)4
Provide a string identifier for this request.5

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)6
Identifier to be canceled (NULL means cancel all monitoring for this process).7

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)8
The application desires to control the response to a monitoring event.9

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)10
Register to have the PMIx server monitor the requestor for heartbeats.11

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)12
Time in seconds before declaring heartbeat missed.13

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)14
Number of heartbeats that can be missed before generating the event.15

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)16
Register to monitor file for signs of life.17

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)18
Monitor size of given file is growing to determine if the application is running.19

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)20
Monitor time since last access of given file to determine if the application is running.21

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)22
Monitor time since last modified of given file to determine if the application is running.23

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)24
Time in seconds between checking the file.25

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)26
Number of file checks that can be missed before generating the event.27

222 PMIx Standard – Version 2.0 – September 2018

Description1

Request that a client be monitored for activity.2

Advice to PMIx server hosts

If this module entry is provided and called by the PMIx server library, then the host environment3
must either provide the requested services or return PMIX_ERR_NOT_SUPPORTED to the4
provided cbfunc.5

CHAPTER 10. SERVER-SPECIFIC INTERFACES 223

APPENDIX A

Acknowledgements

This document represents the work of many people who have contributed to the PMIx community.1
Without the hard work and dedication of these people this document would not have been possible.2
The sections below list some of the active participants and organizations in the various PMIx3
standard iterations.4

A.1 Version 2.05

The following list includes some of the active participants in the PMIx v2 standardization process.6

• Ralph H. Castain, Annapurna Dasari, Christopher A. Holguin, Andrew Friedley, Michael Klemm7
and Terry Wilmarth8

• Joshua Hursey, David Solt, Alexander Eichenberger, Geoff Paulsen, and Sameh Sharkawi9

• Aurelien Bouteiller and George Bosilca10

• Artem Polyakov, Igor Ivanov and Boris Karasev11

• Gilles Gouaillardet12

• Michael A Raymond and Jim Stoffel13

• Dirk Schubert14

• Moe Jette15

• Takahiro Kawashima and Shinji Sumimoto16

• Howard Pritchard17

• David Beer18

• Brice Goglin19

• Geoffroy Vallee, Swen Boehm, Thomas Naughton and David Bernholdt20

• Adam Moody and Martin Schulz21

• Ryan Grant and Stephen Olivier22

• Michael Karo23

224

The following institutions supported this effort through time and travel support for the people listed1
above.2

• Intel Corporation3

• IBM, Inc.4

• University of Tennessee, Knoxville5

• The Exascale Computing Project, an initiative of the US Department of Energy6

• National Science Foundation7

• Mellanox, Inc.8

• Research Organization for Information Science and Technology9

• HPE Co.10

• Allinea (ARM)11

• SchedMD, Inc.12

• Fujitsu Limited13

• Los Alamos National Laboratory14

• Adaptive Solutions, Inc.15

• INRIA16

• Oak Ridge National Laboratory17

• Lawrence Livermore National Laboratory18

• Sandia National Laboratory19

• Altair20

A.2 Version 1.021

The following list includes some of the active participants in the PMIx v1 standardization process.22

• Ralph H. Castain, Annapurna Dasari and Christopher A. Holguin23

• Joshua Hursey and David Solt24

• Aurelien Bouteiller and George Bosilca25

• Artem Polyakov, Elena Shipunova, Igor Ivanov, and Joshua Ladd26

• Gilles Gouaillardet27

• Gary Brown28

APPENDIX A. ACKNOWLEDGEMENTS 225

• Moe Jette1

The following institutions supported this effort through time and travel support for the people listed2
above.3

• Intel Corporation4

• IBM, Inc.5

• University of Tennessee, Knoxville6

• Mellanox, Inc.7

• Research Organization for Information Science and Technology8

• Adaptive Solutions, Inc.9

• SchedMD, Inc.10

226 PMIx Standard – Version 2.0 – September 2018

Bibliography

[1] Ralph H. Castain, David Solt, Joshua Hursey, and Aurelien Bouteiller. PMIx: Process
management for exascale environments. In Proceedings of the 24th European MPI Users’
Group Meeting, EuroMPI ’17, pages 14:1–14:10, New York, NY, USA, 2017. ACM.

227

Index

client_connected, 185
client_finalized, 186

mpix_server_client_connected_fn_t, 185

PMIx_Abort, 8, 24, 118, 187, 188
Defintion, 117

PMIX_ADD_HOST, 120, 124, 199
Defintion, 61

PMIX_ADD_HOSTFILE, 120, 124, 199
Defintion, 61

PMIX_ALLOC_BANDWIDTH, 140, 217
Defintion, 65

PMIX_ALLOC_CPU_LIST, 140, 217
Defintion, 65

PMIX_ALLOC_DIRECTIVE, 50
PMIx_Alloc_directive_string, 9

Defintion, 81
pmix_alloc_directive_t, 36, 50, 81, 216

Defintion, 36
PMIX_ALLOC_EXTEND, 36
PMIX_ALLOC_EXTERNAL, 36
PMIX_ALLOC_ID, 140, 216

Defintion, 65
PMIX_ALLOC_MEM_SIZE, 140, 217

Defintion, 65
PMIX_ALLOC_NETWORK, 140, 217

Defintion, 65
PMIX_ALLOC_NETWORK_ID, 140, 217

Defintion, 65
PMIX_ALLOC_NETWORK_QOS, 141,

217
Defintion, 66

PMIX_ALLOC_NEW, 36
PMIX_ALLOC_NODE_LIST, 140, 217

Defintion, 65
PMIX_ALLOC_NUM_CPU_LIST, 140, 217

Defintion, 65
PMIX_ALLOC_NUM_CPUS, 140, 216

Defintion, 65
PMIX_ALLOC_NUM_NODES, 140, 216

Defintion, 65
PMIX_ALLOC_REAQUIRE, 36
PMIX_ALLOC_RELEASE, 36
PMIX_ALLOC_TIME, 140, 217

Defintion, 66
PMIX_ALLOCATED_NODELIST, 174

Defintion, 55
PMIx_Allocation_request_nb, 9, 134, 141

Defintion, 139
PMIX_ANL_MAP

Defintion, 59
PMIX_APP, 50
PMIX_APP_CONSTRUCT

Defintion, 40
PMIX_APP_CREATE

Defintion, 41
PMIX_APP_DESTRUCT

Defintion, 41
PMIX_APP_FREE

Defintion, 41
PMIX_APP_MAP_REGEX

Defintion, 59
PMIX_APP_MAP_TYPE

Defintion, 59
PMIX_APP_RANK, 173

Defintion, 55
PMIX_APP_SIZE, 173, 174

Defintion, 56
pmix_app_t, 40, 41, 119, 123, 198

Defintion, 40
PMIX_APPLDR, 173

Defintion, 55

228

PMIX_APPNUM, 173
Defintion, 55

PMIX_ARCH
Defintion, 54

PMIX_ATTR_UNDEF
Defintion, 51

PMIX_AVAIL_PHYS_MEMORY, 174
Defintion, 56

PMIX_BINDTO, 120, 124, 174, 200
Defintion, 62

PMIX_BOOL, 49
PMIX_BUFFER, 50
PMIX_BYTE, 49
PMIX_BYTE_OBJECT, 50
PMIX_BYTE_OBJECT_CREATE

Defintion, 46
PMIX_BYTE_OBJECT_DESTRUCT

Defintion, 46
PMIX_BYTE_OBJECT_FREE

Defintion, 46
PMIX_BYTE_OBJECT_LOAD

Defintion, 47
pmix_byte_object_t, 45–47, 50

Defintion, 45
PMIX_CLIENT_AVG_MEMORY

Defintion, 56
PMIX_COLLECT_DATA, 102, 104, 189

Defintion, 57
PMIX_COLLECTIVE_ALGO, 103, 104,

128, 130, 189, 202
Defintion, 58

PMIX_COLLECTIVE_ALGO_REQD, 103,
104, 128, 130, 189, 202

Defintion, 58
PMIX_COMMAND, 50
PMIx_Commit, 8, 78, 96, 102, 126, 179, 191

Defintion, 101
PMIX_COMPRESSED_STRING, 50
PMIx_Connect, 8, 18, 122, 128–130, 132,

203
Defintion, 127

PMIX_CONNECT_MAX_RETRIES, 88
Defintion, 52

PMIx_Connect_nb, 8, 129
Defintion, 129

PMIX_CONNECT_RETRY_DELAY, 88
Defintion, 52

PMIX_CONNECT_SYSTEM_FIRST, 88,
90

Defintion, 52
PMIX_CONNECT_TO_SYSTEM, 88, 90

Defintion, 52
pmix_connection_cbfunc_t, 209

Defintion, 78
PMIX_COSPAWN_APP

Defintion, 62
PMIX_CPU_LIST, 121, 125, 201

Defintion, 63
PMIX_CPUS_PER_PROC, 121, 125, 200

Defintion, 62
PMIX_CPUSET

Defintion, 54
PMIX_CREDENTIAL

Defintion, 54
PMIX_DAEMON_MEMORY

Defintion, 56
PMIX_DATA_ARRAY, 50
pmix_data_array_t, 28, 49, 50, 63, 137, 211

Defintion, 49
PMIX_DATA_BUFFER_CONSTRUCT,

163, 165
Defintion, 160

PMIX_DATA_BUFFER_CREATE, 163,
165

Defintion, 48, 159
PMIX_DATA_BUFFER_DESTRUCT

Defintion, 48, 160
PMIX_DATA_BUFFER_LOAD

Defintion, 161
PMIX_DATA_BUFFER_RELEASE

Defintion, 48, 160
pmix_data_buffer_t, 47, 48, 159–164, 168

Defintion, 47
PMIX_DATA_BUFFER_UNLOAD

Defintion, 161
PMIx_Data_copy, 9

INDEX 229

Defintion, 166
PMIx_Data_copy_payload, 9

Defintion, 167
PMIx_Data_pack, 9, 163

Defintion, 162
PMIx_Data_print, 9

Defintion, 166
PMIX_DATA_RANGE, 50
PMIx_Data_range_string, 9

Defintion, 80
pmix_data_range_t, 27, 50, 80, 157, 208

Defintion, 27
PMIX_DATA_SCOPE, 97, 99

Defintion, 58
PMIX_DATA_TYPE, 50
PMIX_DATA_TYPE_MAX, 50
PMIx_Data_type_string, 9

Defintion, 81
pmix_data_type_t, 30, 33, 39, 49, 81, 163,

164, 166, 167
Defintion, 49

PMIx_Data_unpack, 9
Defintion, 164

PMIX_DEBUG_JOB
Defintion, 64

PMIX_DEBUG_STOP_IN_INIT
Defintion, 64

PMIX_DEBUG_STOP_ON_EXEC
Defintion, 64

PMIX_DEBUG_WAIT_FOR_NOTIFY
Defintion, 64

PMIX_DEBUG_WAITING_FOR_NOTIFY
Defintion, 64

PMIX_DEBUGGER_DAEMONS, 121, 125,
200

Defintion, 62
PMIx_Deregister_errhandler, 9
PMIx_Deregister_event_handler, 9

Defintion, 155
PMIx_Disconnect, 8, 18, 129, 132, 133, 204

Defintion, 130
PMIx_Disconnect_nb, 8, 133

Defintion, 132

PMIX_DISPLAY_MAP, 120, 124, 199
Defintion, 61

pmix_dmodex_response_fn_t, 179
Defintion, 77

PMIX_DOUBLE, 50
PMIX_DSTPATH

Defintion, 52
PMIX_EMBED_BARRIER, 86

Defintion, 58
PMIX_ERR_BAD_PARAM, 17
PMIX_ERR_COMM_FAILURE, 18
PMIX_ERR_DATA_VALUE_NOT_FOUND,

17
PMIX_ERR_DEBUGGER_RELEASE, 17
PMIX_ERR_EVENT_REGISTRATION, 18
PMIX_ERR_HANDSHAKE_FAILED, 17
PMIX_ERR_IN_ERRNO, 17
PMIX_ERR_INIT, 17
PMIX_ERR_INVALID_ARG, 17
PMIX_ERR_INVALID_ARGS, 18
PMIX_ERR_INVALID_CRED, 17
PMIX_ERR_INVALID_KEY, 17
PMIX_ERR_INVALID_KEY_LENGTH, 17
PMIX_ERR_INVALID_KEYVALP, 18
PMIX_ERR_INVALID_LENGTH, 18
PMIX_ERR_INVALID_NAMESPACE, 18
PMIX_ERR_INVALID_NUM_ARGS, 18
PMIX_ERR_INVALID_NUM_PARSED, 18
PMIX_ERR_INVALID_OPERATION, 19
PMIX_ERR_INVALID_SIZE, 18
PMIX_ERR_INVALID_TERMINATION,

18
PMIX_ERR_INVALID_VAL, 17
PMIX_ERR_INVALID_VAL_LENGTH, 18
PMIX_ERR_JOB_TERMINATED, 18
PMIX_ERR_LOST_CONNECTION_TO_CLIENT,

18
PMIX_ERR_LOST_CONNECTION_TO_SERVER,

18
PMIX_ERR_LOST_PEER_CONNECTION,

18
PMIX_ERR_NO_PERMISSIONS, 17
PMIX_ERR_NODE_DOWN, 19

230 PMIx Standard – Version 2.0 – September 2018

PMIX_ERR_NODE_OFFLINE, 19
PMIX_ERR_NOMEM, 17
PMIX_ERR_NOT_FOUND, 18
PMIX_ERR_NOT_IMPLEMENTED, 18
PMIX_ERR_NOT_SUPPORTED, 18
PMIX_ERR_OUT_OF_RESOURCE, 17
PMIX_ERR_PACK_FAILURE, 17
PMIX_ERR_PACK_MISMATCH, 17
PMIX_ERR_PROC_ABORTED, 17
PMIX_ERR_PROC_ABORTING, 17
PMIX_ERR_PROC_CHECKPOINT, 17
PMIX_ERR_PROC_ENTRY_NOT_FOUND,

17
PMIX_ERR_PROC_MIGRATE, 17
PMIX_ERR_PROC_REQUESTED_ABORT,

17
PMIX_ERR_PROC_RESTART, 17
PMIX_ERR_READY_FOR_HANDSHAKE,

17
PMIX_ERR_RESOURCE_BUSY, 17
PMIX_ERR_SERVER_FAILED_REQUEST,

17
PMIX_ERR_SERVER_NOT_AVAIL, 18
PMIX_ERR_SILENT, 17
PMIX_ERR_TIMEOUT, 17
PMIX_ERR_TYPE_MISMATCH, 17
PMIX_ERR_UNKNOWN_DATA_TYPE,

17
PMIX_ERR_UNPACK_FAILURE, 17
PMIX_ERR_UNPACK_INADEQUATE_SPACE,

17
PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER,

18
PMIX_ERR_UNREACH, 17
PMIX_ERR_UPDATE_ENDPOINTS, 18
PMIX_ERR_WOULD_BLOCK, 17
PMIX_ERROR, 17
PMIX_ERROR_GROUP_ABORT

Defintion, 59
PMIX_ERROR_GROUP_COMM

Defintion, 59
PMIX_ERROR_GROUP_GENERAL

Defintion, 60

PMIX_ERROR_GROUP_LOCAL
Defintion, 60

PMIX_ERROR_GROUP_MIGRATE
Defintion, 59

PMIX_ERROR_GROUP_NODE
Defintion, 59

PMIX_ERROR_GROUP_RESOURCE
Defintion, 59

PMIX_ERROR_GROUP_SPAWN
Defintion, 59

PMIX_ERROR_HANDLER_ID
Defintion, 60

PMIX_ERROR_NAME
Defintion, 59

PMIx_Error_string, 9
Defintion, 80

PMIX_EVENT_ACTION_COMPLETE, 19
PMIX_EVENT_ACTION_DEFERRED, 19
PMIX_EVENT_ACTION_TIMEOUT, 154

Defintion, 61
PMIX_EVENT_AFFECTED_PROC, 154,

157
Defintion, 60

PMIX_EVENT_AFFECTED_PROCS, 154,
157

Defintion, 60
PMIX_EVENT_BASE, 85, 89, 93

Defintion, 51
PMIX_EVENT_CUSTOM_RANGE, 153,

157
Defintion, 60

PMIX_EVENT_DO_NOT_CACHE
Defintion, 60

PMIX_EVENT_HDLR_AFTER, 153
Defintion, 60

PMIX_EVENT_HDLR_APPEND, 153
Defintion, 60

PMIX_EVENT_HDLR_BEFORE, 153
Defintion, 60

PMIX_EVENT_HDLR_FIRST, 153
Defintion, 60

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY,
153

INDEX 231

Defintion, 60
PMIX_EVENT_HDLR_LAST, 153

Defintion, 60
PMIX_EVENT_HDLR_LAST_IN_CATEGORY,

153
Defintion, 60

PMIX_EVENT_HDLR_NAME, 153
Defintion, 60

PMIX_EVENT_HDLR_PREPEND, 153
Defintion, 60

PMIX_EVENT_NO_ACTION_TAKEN, 19
PMIX_EVENT_NO_TERMINATION

Defintion, 61
PMIX_EVENT_NON_DEFAULT, 157

Defintion, 60
pmix_event_notification_cbfunc_fn_t, 73, 75

Defintion, 73
PMIX_EVENT_PARTIAL_ACTION_TAKEN,

19
PMIX_EVENT_RETURN_OBJECT, 154

Defintion, 60
PMIX_EVENT_SILENT_TERMINATION,

154
Defintion, 60

PMIX_EVENT_TERMINATE_JOB, 154
Defintion, 61

PMIX_EVENT_TERMINATE_NODE, 154
Defintion, 61

PMIX_EVENT_TERMINATE_PROC, 154
Defintion, 61

PMIX_EVENT_TERMINATE_SESSION,
154

Defintion, 61
PMIX_EVENT_WANT_TERMINATION

Defintion, 61
pmix_evhdlr_reg_cbfunc_t, 72, 153

Defintion, 72
PMIX_EXISTS, 17
PMIX_EXTERNAL_ERR_BASE, 19
PMIx_Fence, 3, 7, 8, 10, 93, 103, 105, 129,

132, 179, 188, 190
Defintion, 102

PMIx_Fence_nb, 8, 70, 105, 188, 190

Defintion, 103
PMIx_Finalize, 8, 18, 24, 58, 85, 86, 126,

185, 186
Defintion, 86

PMIX_FLOAT, 50
PMIX_FWD_STDERR, 121, 125, 200, 213

Defintion, 62
PMIX_FWD_STDIN, 121, 125, 200, 213

Defintion, 62
PMIX_FWD_STDOUT, 121, 125, 200, 213

Defintion, 62
PMIX_GDS_ACTION_COMPLETE, 19
PMIX_GDS_MODULE, 85, 89, 93

Defintion, 54
PMIx_generate_ppn, 8

Defintion, 170
PMIx_generate_regex, 8

Defintion, 169
PMIx_Get, 3, 8, 28, 51, 58, 85, 97–100

Defintion, 96
PMIx_Get_nb, 8, 71

Defintion, 98
PMIx_Get_version, 9, 13

Defintion, 83
PMIX_GLOBAL, 27
PMIX_GLOBAL_RANK, 174

Defintion, 55
PMIX_GRPID, 106, 108, 110, 112, 113, 115,

137, 140, 142, 145, 148, 192–198,
205, 210, 212, 214, 216, 219, 221

Defintion, 52
PMIx_Heartbeat, 9

Defintion, 146
PMIX_HOST, 120, 124, 199

Defintion, 61
PMIX_HOSTFILE, 120, 124, 199

Defintion, 61
PMIX_HOSTNAME, 174

Defintion, 55
PMIX_HWLOC_SHMEM_ADDR

Defintion, 57
PMIX_HWLOC_SHMEM_FILE

Defintion, 57

232 PMIx Standard – Version 2.0 – September 2018

PMIX_HWLOC_SHMEM_SIZE
Defintion, 57

PMIX_HWLOC_XML_V1, 174
Defintion, 57

PMIX_HWLOC_XML_V2, 174
Defintion, 57

PMIX_IMMEDIATE, 97, 99
Defintion, 58

PMIX_INDEX_ARGV, 121, 125, 200
Defintion, 62

PMIX_INFO, 50
PMIX_INFO_ARRAY, 50
pmix_info_array, 31, 32

Defintion, 31
pmix_info_cbfunc_t, 68, 71, 136, 139, 142,

144–146, 210, 216, 218, 220
Defintion, 71, 136

PMIX_INFO_CONSTRUCT
Defintion, 32

PMIX_INFO_CREATE
Defintion, 33

PMIX_INFO_DESTRUCT
Defintion, 32

PMIX_INFO_DIRECTIVES, 50
PMIx_Info_directives_string, 9

Defintion, 81
pmix_info_directives_t, 35, 81

Defintion, 35
PMIX_INFO_FREE

Defintion, 33
PMIX_INFO_IS_REQUIRED, 35

Defintion, 36
PMIX_INFO_LOAD

Defintion, 33
PMIX_INFO_REQD, 35, 36
PMIX_INFO_REQUIRED, 35

Defintion, 36
pmix_info_t, 3, 9, 10, 27, 31–36, 64–66,

72–75, 84, 86, 87, 91, 93, 107,
111, 138–140, 143, 144, 146, 148,
157, 208, 212, 213, 215, 217, 218,
220, 221

Defintion, 31

PMIX_INFO_TRUE
Defintion, 34

PMIX_INFO_XFER
Defintion, 34

PMIx_Init, 9, 62, 64, 83, 85, 86, 121, 125,
185, 200

Defintion, 83
PMIx_init, 185
PMIx_Initialized, 8

Defintion, 82
PMIX_INT, 49
PMIX_INT16, 49
PMIX_INT32, 49
PMIX_INT64, 49
PMIX_INT8, 49
PMIX_INTERNAL, 27
PMIX_JCTRL_CHECKPOINT, 18
PMIX_JCTRL_CHECKPOINT_COMPLETE,

18
PMIX_JCTRL_PREEMPT_ALERT, 18
PMIX_JOB_CONTINUOUS, 121, 125, 201

Defintion, 63
PMIx_Job_control_nb, 9, 134, 141, 175

Defintion, 141
PMIX_JOB_CTRL_CANCEL, 143, 220

Defintion, 66
PMIX_JOB_CTRL_CHECKPOINT, 143,

220
Defintion, 66

PMIX_JOB_CTRL_CHECKPOINT_EVENT,
143, 220

Defintion, 66
PMIX_JOB_CTRL_CHECKPOINT_METHOD,

143, 220
Defintion, 66

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL,
143, 220

Defintion, 66
PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT,

143, 220
Defintion, 66

PMIX_JOB_CTRL_ID, 142, 219
Defintion, 66

INDEX 233

PMIX_JOB_CTRL_KILL, 142, 219
Defintion, 66

PMIX_JOB_CTRL_PAUSE, 142, 219
Defintion, 66

PMIX_JOB_CTRL_PREEMPTIBLE, 143,
220

Defintion, 66
PMIX_JOB_CTRL_PROVISION, 143, 220

Defintion, 66
PMIX_JOB_CTRL_PROVISION_IMAGE,

143, 220
Defintion, 66

PMIX_JOB_CTRL_RESTART, 143, 220
Defintion, 66

PMIX_JOB_CTRL_RESUME, 142, 219
Defintion, 66

PMIX_JOB_CTRL_SIGNAL, 143, 219
Defintion, 66

PMIX_JOB_CTRL_TERMINATE, 143, 219
Defintion, 66

PMIX_JOB_NUM_APPS, 174
Defintion, 56

PMIX_JOB_RECOVERABLE, 121, 125,
201

Defintion, 63
PMIX_JOB_SIZE, 98, 100, 172

Defintion, 56
PMIX_JOB_TERM_STATUS

Defintion, 58
PMIX_JOBID, 172

Defintion, 55
pmix_key_t, 19, 20, 95, 97

Defintion, 19
PMIX_KVAL, 50
PMIX_LOCAL, 26
PMIX_LOCAL_CPUSETS, 172

Defintion, 56
PMIX_LOCAL_PEERS, 172

Defintion, 55
PMIX_LOCAL_PROCS, 174

Defintion, 56
PMIX_LOCAL_RANK, 173

Defintion, 55

PMIX_LOCAL_SIZE, 172
Defintion, 56

PMIX_LOCAL_TOPO
Defintion, 57

PMIX_LOCALITY
Defintion, 56

PMIX_LOCALITY_STRING
Defintion, 57

PMIX_LOCALLDR, 174
Defintion, 55

PMIX_LOG_EMAIL, 148, 215
Defintion, 64

PMIX_LOG_EMAIL_ADDR, 148, 215
Defintion, 64

PMIX_LOG_EMAIL_MSG, 148, 215
Defintion, 64

PMIX_LOG_EMAIL_SUBJECT, 148, 215
Defintion, 64

PMIX_LOG_MSG, 148, 215
Defintion, 64

PMIx_Log_nb, 9, 64, 149
Defintion, 147

PMIX_LOG_STDERR, 148, 214
Defintion, 64

PMIX_LOG_STDOUT, 148, 214
Defintion, 64

PMIX_LOG_SYSLOG, 148, 214
Defintion, 64

PMIx_Lookup, 8, 37, 105, 111, 113
Defintion, 109

pmix_lookup_cbfunc_t, 70, 194
Defintion, 70

PMIx_Lookup_nb, 70, 71
Defintion, 111

PMIX_MAP_BLOB
Defintion, 59

PMIX_MAPBY, 120, 124, 174, 200
Defintion, 62

PMIX_MAPPER, 120, 124, 199
Defintion, 61

PMIX_MAX_KEYLEN, 15, 20
PMIX_MAX_NSLEN, 15, 20
PMIX_MAX_PROCS, 172

234 PMIx Standard – Version 2.0 – September 2018

Defintion, 56
PMIX_MAX_RESTARTS, 122, 126, 201

Defintion, 63
PMIX_MERGE_STDERR_STDOUT, 121,

125, 200
Defintion, 62

PMIX_MODEL_DECLARED, 19
PMIX_MODEL_LIBRARY_NAME

Defintion, 53
PMIX_MODEL_LIBRARY_VERSION

Defintion, 53
PMIX_MODEX, 50
pmix_modex_cbfunc_t, 68, 188, 190

Defintion, 68
PMIX_MODEX_CONSTRUCT

Defintion, 44
PMIX_MODEX_CREATE

Defintion, 44
pmix_modex_data_t, 43

Defintion, 43
PMIX_MODEX_DESTRUCT

Defintion, 44
PMIX_MODEX_FREE

Defintion, 45
pmix_modex_t, 44, 45
PMIX_MONITOR_APP_CONTROL, 145,

222
Defintion, 67

PMIX_MONITOR_CANCEL, 145, 222
Defintion, 67

PMIX_MONITOR_FILE, 145, 146, 222
Defintion, 67

PMIX_MONITOR_FILE_ACCESS, 145,
222

Defintion, 67
PMIX_MONITOR_FILE_ALERT, 18
PMIX_MONITOR_FILE_CHECK_TIME,

146, 222
Defintion, 67

PMIX_MONITOR_FILE_DROPS, 146, 222
Defintion, 67

PMIX_MONITOR_FILE_MODIFY, 146,
222

Defintion, 67
PMIX_MONITOR_FILE_SIZE, 145, 222

Defintion, 67
PMIX_MONITOR_HEARTBEAT, 145, 222

Defintion, 67
PMIX_MONITOR_HEARTBEAT_ALERT,

18
PMIX_MONITOR_HEARTBEAT_DROPS,

145, 222
Defintion, 67

PMIX_MONITOR_HEARTBEAT_TIME,
145, 222

Defintion, 67
PMIX_MONITOR_ID, 145, 222

Defintion, 67
PMIX_NET_TOPO

Defintion, 57
PMIX_NO_OVERSUBSCRIBE, 121, 125,

200
Defintion, 63

PMIX_NO_PROCS_ON_HEAD, 121, 125,
200

Defintion, 62
PMIX_NODE_LIST, 172

Defintion, 55, 57
PMIX_NODE_MAP, 172

Defintion, 58
PMIX_NODE_RANK, 173

Defintion, 55
PMIX_NODE_SIZE, 174

Defintion, 56
PMIX_NODEID, 173

Defintion, 55
PMIX_NON_PMI, 120, 124, 200

Defintion, 62
pmix_notification_fn_t, 74, 153

Defintion, 74
PMIX_NOTIFY_ALLOC_COMPLETE, 18
PMIX_NOTIFY_COMPLETION

Defintion, 58
PMIx_Notify_error, 9
PMIx_Notify_event, 9

Defintion, 156

INDEX 235

PMIX_NPROC_OFFSET, 173
Defintion, 55

PMIX_NSDIR, 54
Defintion, 54

PMIX_NSPACE, 172
Defintion, 55

pmix_nspace_t, 20, 23, 69
Defintion, 20

PMIX_NUM_NODES, 98, 100, 172
Defintion, 56

pmix_op_cbfunc_t, 70, 73, 77, 108, 115,
129, 133, 147, 156, 157, 171, 176,
177, 182, 185–187, 192, 196, 202,
203, 205, 207, 208, 214, 219, 221

Defintion, 70
PMIX_OPTIONAL, 97, 99

Defintion, 58
PMIX_OUTPUT_TO_FILE, 121, 125, 200

Defintion, 62
PMIX_PARENT_ID, 119, 123, 199

Defintion, 56
PMIX_PDATA, 50
PMIX_PDATA_CONSTRUCT

Defintion, 37
PMIX_PDATA_CREATE

Defintion, 38
PMIX_PDATA_DESTRUCT

Defintion, 37
PMIX_PDATA_FREE

Defintion, 38
PMIX_PDATA_LOAD

Defintion, 38
pmix_pdata_t, 37–39, 70, 71, 111

Defintion, 37
PMIX_PDATA_XFER

Defintion, 39
PMIX_PERSIST, 50
PMIX_PERSIST_APP, 27
PMIX_PERSIST_FIRST_READ, 27
PMIX_PERSIST_INDEF, 27
PMIX_PERSIST_PROC, 27
PMIX_PERSIST_SESSION, 27
PMIX_PERSISTENCE, 106, 108, 192

Defintion, 58
PMIx_Persistence_string, 9

Defintion, 80
pmix_persistence_t, 27, 50, 80

Defintion, 27
PMIX_PERSONALITY, 120, 124, 199

Defintion, 61
PMIX_PID, 49
PMIX_POINTER, 50
PMIX_PPR, 120, 124, 199

Defintion, 61
PMIX_PREFIX, 120, 124, 199

Defintion, 61
PMIX_PRELOAD_BIN, 120, 124, 199

Defintion, 62
PMIX_PRELOAD_FILES, 120, 124, 199

Defintion, 62
PMIX_PROC, 50
PMIX_PROC_BLOB

Defintion, 59
PMIX_PROC_CONSTRUCT, 22

Defintion, 22, 45, 48
PMIX_PROC_CREATE

Defintion, 22
PMIX_PROC_DATA

Defintion, 58
PMIX_PROC_DESTRUCT

Defintion, 22
PMIX_PROC_FREE, 135

Defintion, 23
PMIX_PROC_INFO, 50
PMIX_PROC_INFO_CONSTRUCT

Defintion, 25
PMIX_PROC_INFO_CREATE

Defintion, 26
PMIX_PROC_INFO_DESTRUCT

Defintion, 25
PMIX_PROC_INFO_FREE

Defintion, 26
pmix_proc_info_t, 24–26, 50, 63, 137, 211

Defintion, 24
PMIX_PROC_LOAD

Defintion, 23

236 PMIx Standard – Version 2.0 – September 2018

PMIX_PROC_MAP, 172
Defintion, 59

PMIX_PROC_PID
Defintion, 55

PMIX_PROC_RANK, 50
PMIX_PROC_STATE, 50
PMIX_PROC_STATE_ABORTED, 24
PMIX_PROC_STATE_ABORTED_BY_SIG,

24
PMIX_PROC_STATE_CALLED_ABORT,

24
PMIX_PROC_STATE_CANNOT_RESTART,

24
PMIX_PROC_STATE_COMM_FAILED,

24
PMIX_PROC_STATE_CONNECTED, 24
PMIX_PROC_STATE_ERROR, 24
PMIX_PROC_STATE_FAILED_TO_LAUNCH,

24
PMIX_PROC_STATE_FAILED_TO_START,

24
PMIX_PROC_STATE_KILLED_BY_CMD,

24
PMIX_PROC_STATE_LAUNCH_UNDERWAY,

24
PMIX_PROC_STATE_MIGRATING, 24
PMIX_PROC_STATE_PREPPED, 24
PMIX_PROC_STATE_RESTART, 24
PMIX_PROC_STATE_RUNNING, 24
PMIX_PROC_STATE_STATUS

Defintion, 58
PMIx_Proc_state_string, 9

Defintion, 80
pmix_proc_state_t, 23, 50, 80

Defintion, 23
PMIX_PROC_STATE_TERM_NON_ZERO,

24
PMIX_PROC_STATE_TERM_WO_SYNC,

24
PMIX_PROC_STATE_TERMINATE, 24
PMIX_PROC_STATE_TERMINATED, 24
PMIX_PROC_STATE_UNDEF, 24
PMIX_PROC_STATE_UNTERMINATED,

24
pmix_proc_t, 21–23, 38, 39, 50, 56, 60, 75,

79, 85, 87, 89, 98, 102–104, 117,
154, 157, 163, 164, 174, 176–179,
185–188, 190, 192, 194, 196, 198,
202, 203, 208, 210, 214, 216, 218,
221

Defintion, 21
PMIX_PROC_TERMINATED, 18
PMIX_PROC_URI

Defintion, 56
PMIX_PROCDIR

Defintion, 54
PMIx_Process_monitor_nb, 9, 134, 147

Defintion, 144
PMIX_PROCID, 174

Defintion, 55
PMIX_PROGRAMMING_MODEL

Defintion, 53
PMIx_Publish, 8, 27, 58, 106–109, 192, 193

Defintion, 105
PMIx_Publish_nb, 8, 109

Defintion, 107
PMIx_Put, 8, 26–28, 78, 96, 98, 100–103,

126, 179, 191
Defintion, 95

PMIX_QUERY, 50
PMIX_QUERY_ALLOC_STATUS, 138,

211
Defintion, 64

PMIX_QUERY_AUTHORIZATIONS
Defintion, 63

PMIX_QUERY_CONSTRUCT
Defintion, 42

PMIX_QUERY_CREATE
Defintion, 43

PMIX_QUERY_DEBUG_SUPPORT, 137,
211

Defintion, 63
PMIX_QUERY_DESTRUCT

Defintion, 42
PMIX_QUERY_FREE

Defintion, 43

INDEX 237

PMIx_Query_info_nb, 9, 42, 63, 134
Defintion, 136

PMIX_QUERY_JOB_STATUS, 137, 211
Defintion, 63

PMIX_QUERY_LOCAL_ONLY, 137, 211
Defintion, 63

PMIX_QUERY_LOCAL_PROC_TABLE,
137, 211

Defintion, 63
PMIX_QUERY_MEMORY_USAGE, 137,

211
Defintion, 63

PMIX_QUERY_NAMESPACES, 137, 211
Defintion, 63

PMIX_QUERY_PARTIAL_SUCCESS, 18
PMIX_QUERY_PROC_TABLE, 137, 211

Defintion, 63
PMIX_QUERY_QUEUE_LIST, 137, 211

Defintion, 63
PMIX_QUERY_QUEUE_STATUS, 137,

211
Defintion, 63

PMIX_QUERY_REPORT_AVG, 137, 211
Defintion, 63

PMIX_QUERY_REPORT_MINMAX, 138,
211

Defintion, 64
PMIX_QUERY_SPAWN_SUPPORT, 137,

211
Defintion, 63

pmix_query_t, 42, 43, 210, 212
Defintion, 42

PMIX_RANGE, 106, 108, 110, 112, 114,
115, 154, 192, 194, 196, 208

Defintion, 58
PMIX_RANGE_CUSTOM, 27
PMIX_RANGE_GLOBAL, 27
PMIX_RANGE_LOCAL, 27
PMIX_RANGE_NAMESPACE, 27
PMIX_RANGE_PROC_LOCAL, 27
PMIX_RANGE_RM, 27
PMIX_RANGE_SESSION, 27
PMIX_RANGE_UNDEF, 27

PMIX_RANK, 172
Defintion, 55

PMIX_RANK_LOCAL_NODE, 21
pmix_rank_t, 21, 23, 50

Defintion, 21
PMIX_RANK_UNDEF, 21
PMIX_RANK_WILDCARD, 21
PMIX_RANKBY, 120, 124, 174, 200

Defintion, 62
PMIx_Register_errhandler, 9
PMIx_Register_event_handler, 9, 73, 134

Defintion, 152
PMIX_REGISTER_NODATA, 172

Defintion, 51, 58
pmix_release_cbfunc_t, 68

Defintion, 68
PMIX_REMOTE, 26
PMIX_REPORT_BINDINGS, 121, 125, 200

Defintion, 63
PMIX_REQUESTOR_IS_CLIENT, 119,

123
Defintion, 53

PMIX_REQUESTOR_IS_TOOL, 119, 123
Defintion, 53

PMIx_Resolve_nodes, 8
Defintion, 135

PMIx_Resolve_peers, 8
Defintion, 135

PMIX_RM_NAME
Defintion, 65

PMIX_RM_VERSION
Defintion, 65

PMIX_SCOPE, 50
PMIx_Scope_string, 9

Defintion, 80
pmix_scope_t, 26, 50, 80, 96

Defintion, 26
PMIX_SCOPE_UNDEF, 26
PMIX_SEND_HEARTBEAT

Defintion, 67
pmix_server_abort_fn_t

Defintion, 187
pmix_server_alloc_fn_t

238 PMIx Standard – Version 2.0 – September 2018

Defintion, 215
pmix_server_client_connected_fn_t, 70, 177,

185
Defintion, 184

PMIx_server_client_finalized_fn_t, 186
pmix_server_client_finalized_fn_t, 186

Defintion, 185
pmix_server_connect_fn_t, 203, 204

Defintion, 201
PMIx_server_deregister_client, 8

Defintion, 177
pmix_server_deregister_events_fn_t

Defintion, 206
PMIx_server_deregister_nspace, 8, 178

Defintion, 175
pmix_server_disconnect_fn_t, 204

Defintion, 203
pmix_server_dmodex_req_fn_t, 68

Defintion, 190
PMIx_server_dmodex_request, 9, 77, 78,

179
Defintion, 179

PMIX_SERVER_ENABLE_MONITORING
Defintion, 52

pmix_server_fencenb_fn_t, 68, 190
Defintion, 188

PMIx_server_finalize, 8
Defintion, 93

PMIX_SERVER_HOSTNAME
Defintion, 52

PMIx_server_init, 8, 83, 183
Defintion, 91

pmix_server_job_control_fn_t
Defintion, 218

pmix_server_listener_fn_t
Defintion, 209

pmix_server_log_fn_t
Defintion, 213

pmix_server_lookup_fn_t
Defintion, 193

pmix_server_module_t, 91, 93, 183
Defintion, 183

pmix_server_monitor_fn_t

Defintion, 221
pmix_server_notify_event_fn_t, 76

Defintion, 207
PMIX_SERVER_NSPACE, 91, 173

Defintion, 52
PMIX_SERVER_PIDINFO, 88, 89

Defintion, 52
pmix_server_publish_fn_t

Defintion, 191
pmix_server_query_fn_t

Defintion, 210
PMIX_SERVER_RANK, 91, 173

Defintion, 52
PMIx_server_register_client, 8, 185, 186

Defintion, 176
pmix_server_register_events_fn_t

Defintion, 204
PMIx_server_register_nspace, 8, 13, 70

Defintion, 171
PMIX_SERVER_REMOTE_CONNECTIONS,

93
Defintion, 51

PMIx_server_setup_application, 9, 76, 77,
182

Defintion, 180
PMIx_server_setup_fork, 9

Defintion, 178
PMIx_server_setup_local_support, 9

Defintion, 181
pmix_server_spawn_fn_t, 69

Defintion, 197
PMIX_SERVER_SYSTEM_SUPPORT, 92

Defintion, 51
PMIX_SERVER_TMPDIR, 91

Defintion, 51
pmix_server_tool_connection_fn_t

Defintion, 212
PMIX_SERVER_TOOL_SUPPORT, 91

Defintion, 51
pmix_server_unpublish_fn_t

Defintion, 195
PMIX_SERVER_URI, 87, 89

Defintion, 52

INDEX 239

PMIX_SESSION_ID, 173
Defintion, 55

PMIX_SET_ENVAR
Defintion, 65

PMIX_SET_SESSION_CWD, 120, 124, 199
Defintion, 62

pmix_setup_application_cbfunc_t, 180
Defintion, 76

PMIX_SINGLE_LISTENER, 84
Defintion, 53

PMIX_SIZE, 49
PMIX_SOCKET_MODE, 84, 88, 92

Defintion, 53
PMIx_Spawn, 8, 40, 54, 61, 118, 119, 122,

123, 126, 175, 178, 197, 201
Defintion, 118

pmix_spawn_cbfunc_t, 69, 123, 198
Defintion, 69

PMIx_Spawn_nb, 8, 40, 69
Defintion, 122

PMIX_SPAWNED, 119, 123, 199
Defintion, 54

PMIX_STATUS, 50
pmix_status_t, 16, 31, 50, 72, 73, 75, 77–80,

153, 157, 205, 207, 208
Defintion, 16

PMIX_STDIN_TGT, 121, 125, 200
Defintion, 62

PMIx_Store_internal, 9
Defintion, 100

PMIX_STRING, 49
PMIX_SUCCESS, 17
PMIX_SYSTEM_TMPDIR, 91

Defintion, 51
PMIX_TAG_OUTPUT, 121, 125, 200

Defintion, 62
PMIX_TCP_DISABLE_IPV4, 85, 89, 92

Defintion, 54
PMIX_TCP_DISABLE_IPV6, 85, 89, 92

Defintion, 54
PMIX_TCP_IF_EXCLUDE, 84, 88, 92

Defintion, 53
PMIX_TCP_IF_INCLUDE, 84, 88, 92

Defintion, 53
PMIX_TCP_IPV4_PORT, 85, 88, 92

Defintion, 54
PMIX_TCP_IPV6_PORT, 85, 88, 92

Defintion, 54
PMIX_TCP_REPORT_URI, 84, 88, 92

Defintion, 53
PMIX_TCP_URI, 88, 89

Defintion, 53
PMIX_TDIR_RMCLEAN

Defintion, 54
PMIX_THREADING_MODEL

Defintion, 53
PMIX_TIME, 50
PMIX_TIME_REMAINING, 134, 138, 211

Defintion, 64
PMIX_TIMEOUT, 3, 10, 97–100, 103–106,

108–110, 112–116, 128, 130, 131,
133, 189, 191, 193, 195, 197, 201,
202, 204

Defintion, 57
PMIX_TIMESTAMP_OUTPUT, 121, 125,

200
Defintion, 62

PMIX_TIMEVAL, 50
PMIX_TMPDIR, 54

Defintion, 54
pmix_tool_connection_cbfunc_t, 212

Defintion, 79
PMIX_TOOL_DO_NOT_CONNECT, 87,

89
Defintion, 52

PMIx_tool_finalize, 9
Defintion, 90

PMIx_tool_init, 9, 83, 90
Defintion, 87

PMIX_TOOL_NSPACE, 87
Defintion, 52

PMIX_TOOL_RANK, 87
Defintion, 52

PMIX_TOPOLOGY
Defintion, 57

PMIX_TOPOLOGY_SIGNATURE

240 PMIx Standard – Version 2.0 – September 2018

Defintion, 57
PMIX_UINT, 49
PMIX_UINT16, 50
PMIX_UINT32, 50
PMIX_UINT64, 50
PMIX_UINT8, 49
PMIX_UNDEF, 49
PMIX_UNIV_SIZE, 98, 100, 172

Defintion, 56
PMIx_Unpublish, 8, 114, 116

Defintion, 113
PMIx_Unpublish_nb, 8

Defintion, 114
PMIX_UNSET_ENVAR

Defintion, 65
PMIX_USERID, 106, 108, 110, 112, 113,

115, 137, 140, 142, 145, 148,
192–198, 205, 210, 212, 214, 216,
219, 221

Defintion, 52
PMIX_USOCK_DISABLE, 84, 92

Defintion, 53
PMIX_VALUE, 50

pmix_value_cbfunc_t, 71
Defintion, 71

PMIX_VALUE_CONSTRUCT
Defintion, 29

PMIX_VALUE_CREATE
Defintion, 29

PMIX_VALUE_DESTRUCT
Defintion, 29

PMIX_VALUE_FREE
Defintion, 30

PMIX_VALUE_LOAD
Defintion, 30

pmix_value_t, 28–31, 50, 71, 95, 96
Defintion, 28

PMIX_VALUE_XFER
Defintion, 31

PMIX_VERSION_INFO
Defintion, 53

PMIX_WAIT, 110–112, 194
Defintion, 58

PMIX_WDIR, 119, 123, 199
Defintion, 61

INDEX 241

	1 Introduction
	1.1 Charter
	1.2 PMIx Standard Overview
	1.2.1 Who should use the standard?
	1.2.2 What is defined in the standard?
	1.2.3 What is not defined in the standard?
	1.2.4 General Guidance for PMIx Users and Implementors

	1.3 PMIx Architecture Overview
	1.3.1 The PMIx Reference Implementation (PRI)
	1.3.2 The PMIx Reference RunTime Environment (PRRTE)

	1.4 Organization of this document
	1.5 Version 1.0: June 12, 2015
	1.6 Version 2.0: Sept. 2018

	2 PMIx Terms and Conventions
	2.1 Notational Conventions
	2.2 Semantics
	2.3 Naming Conventions
	2.4 Procedure Conventions
	2.5 Standard vs Reference Implementation

	3 Data Structures and Types
	3.1 Constants
	3.1.1 Error Constants

	3.2 Data Types
	3.2.1 Key Structure
	3.2.2 Namespace Structure
	3.2.3 Rank Structure
	3.2.4 Process Structure
	3.2.5 Process structure support macros
	3.2.6 Process State Structure
	3.2.7 Process Information Structure
	3.2.8 Process Information Structure support macros
	3.2.9 Scope of Put Data
	3.2.10 Range of Published Data
	3.2.11 Data Persistence Structure
	3.2.12 Value Structure
	3.2.13 Value structure support macros
	3.2.14 Load a [struct:pmix_value_t]pmix_value_t structure
	3.2.15 Info and Info Array Structures
	3.2.16 Info structure support macros
	3.2.17 Info Type Directives
	3.2.18 Info Directive support macros
	3.2.19 Job Allocation Directives
	3.2.20 Lookup Returned Data Structure
	3.2.21 Lookup data structure support macros
	3.2.22 Application Structure
	3.2.23 App structure support macros
	3.2.24 Query Structure
	3.2.25 Query structure support macros
	3.2.26 Modex Structure
	3.2.27 Modex data structure support macros

	3.3 Data Packing/Unpacking Types and Structures
	3.3.1 Byte Object Type
	3.3.2 Byte object support macros
	3.3.3 Data Buffer Type
	3.3.4 Data buffer support macros
	3.3.5 Data Array Structure
	3.3.6 Generalized Data Types Used for Packing/Unpacking

	3.4 Reserved attributes
	3.4.1 Initialization attributes
	3.4.2 Tool-related attributes
	3.4.3 Identification attributes
	3.4.4 UNIX socket rendezvous socket attributes
	3.4.5 TCP connection attributes
	3.4.6 Global Data Storage (GDS) attributes
	3.4.7 General process-level attributes
	3.4.8 Scratch directory attributes
	3.4.9 Relative Rank Descriptive Attributes
	3.4.10 Size information attributes
	3.4.11 Memory information attributes
	3.4.12 Topology information attributes
	3.4.13 Request-related attributes
	3.4.14 Server-to-PMIx library attributes
	3.4.15 Srever-to-Client attributes
	3.4.16 Event handler registration and notification attributes
	3.4.17 Fault tolerance attributes
	3.4.18 Spawn attributes
	3.4.19 Query attributes
	3.4.20 Log attributes
	3.4.21 Debugger attributes
	3.4.22 Resource manager attributes
	3.4.23 Environment variable attributes
	3.4.24 Job Allocation attributes
	3.4.25 Job control attributes
	3.4.26 Monitoring attributes

	3.5 Callback Functions
	3.5.1 Release Callback Function
	3.5.2 Modex Callback Function
	3.5.3 Spawn Callback Function
	3.5.4 Op Callback Function
	3.5.5 Lookup Callback Function
	3.5.6 Value Callback Function
	3.5.7 Info Callback Function
	3.5.8 Event Handler Registration Callback Function
	3.5.9 Notification Handler Completion Callback Function
	3.5.10 Notification Function
	3.5.11 Server Setup Application Callback Function
	3.5.12 Server Direct Modex Response Callback Function
	3.5.13 pmix_connection_cbfunc_t
	3.5.14 pmix_tool_connection_cbfunc_t
	3.5.15 Constant String Functions

	4 Initialization and Finalization
	4.1 Query
	4.1.1 PMIx_Initialized
	4.1.2 PMIx_Get_version

	4.2 Client Initialization and Finalization
	4.2.1 PMIx_Init
	4.2.2 PMIx_Finalize

	4.3 Tool Initialization and Finalization
	4.3.1 PMIx_tool_init
	4.3.2 PMIx_tool_finalize

	4.4 Server Initialization and Finalization
	4.4.1 PMIx_server_init
	4.4.2 PMIx_server_finalize

	5 Key/Value Management
	5.1 Setting and Accessing Key/Value Pairs
	5.1.1 PMIx_Put
	5.1.2 PMIx_Get
	5.1.3 PMIx_Get_nb
	5.1.4 PMIx_Store_internal

	5.2 Exchanging Key/Value Pairs
	5.2.1 PMIx_Commit
	5.2.2 PMIx_Fence
	5.2.3 PMIx_Fence_nb

	5.3 Publish and Lookup Data
	5.3.1 PMIx_Publish
	5.3.2 PMIx_Publish_nb
	5.3.3 PMIx_Lookup
	5.3.4 PMIx_Lookup_nb
	5.3.5 PMIx_Unpublish
	5.3.6 PMIx_Unpublish_nb

	6 Process Management
	6.1 Abort
	6.1.1 PMIx_Abort

	6.2 Process Creation
	6.2.1 PMIx_Spawn
	6.2.2 PMIx_Spawn_nb

	6.3 Connecting and Disconnecting Processes
	6.3.1 PMIx_Connect
	6.3.2 PMIx_Connect_nb
	6.3.3 PMIx_Disconnect
	6.3.4 PMIx_Disconnect_nb

	7 Job Allocation Management and Reporting
	7.1 Query
	7.1.1 PMIx_Resolve_peers
	7.1.2 PMIx_Resolve_nodes
	7.1.3 PMIx_Query_info_nb

	7.2 Allocation Requests
	7.2.1 PMIx_Allocation_request_nb
	7.2.2 PMIx_Job_control_nb

	7.3 Process and Job Monitoring
	7.3.1 PMIx_Process_monitor_nb
	7.3.2 PMIx_Heartbeat

	7.4 Logging
	7.4.1 PMIx_Log_nb

	8 Event Notification
	8.1 Notification and Management
	8.1.1 PMIx_Register_event_handler
	8.1.2 PMIx_Deregister_event_handler
	8.1.3 PMIx_Notify_event

	9 Data Packing and Unpacking
	9.1 Support Macros
	9.1.1 PMIX_DATA_BUFFER_CREATE
	9.1.2 PMIX_DATA_BUFFER_RELEASE
	9.1.3 PMIX_DATA_BUFFER_CONSTRUCT
	9.1.4 PMIX_DATA_BUFFER_DESTRUCT
	9.1.5 PMIX_DATA_BUFFER_LOAD
	9.1.6 PMIX_DATA_BUFFER_UNLOAD

	9.2 General Routines
	9.2.1 PMIx_Data_pack
	9.2.2 PMIx_Data_unpack
	9.2.3 PMIx_Data_copy
	9.2.4 PMIx_Data_print
	9.2.5 PMIx_Data_copy_payload

	10 Server-Specific Interfaces
	10.1 Server Support Functions
	10.1.1 PMIx_generate_regex
	10.1.2 PMIx_generate_ppn
	10.1.3 PMIx_server_register_nspace
	10.1.4 PMIx_server_deregister_nspace
	10.1.5 PMIx_server_register_client
	10.1.6 PMIx_server_deregister_client
	10.1.7 PMIx_server_setup_fork
	10.1.8 PMIx_server_dmodex_request
	10.1.9 PMIx_server_setup_application
	10.1.10 PMIx_server_setup_local_support

	10.2 Server Function Pointers
	10.2.1 pmix_server_module_t Module
	10.2.2 pmix_server_client_connected_fn_t
	10.2.3 pmix_server_client_finalized_fn_t
	10.2.4 pmix_server_abort_fn_t
	10.2.5 pmix_server_fencenb_fn_t
	10.2.6 pmix_server_dmodex_req_fn_t
	10.2.7 pmix_server_publish_fn_t
	10.2.8 pmix_server_lookup_fn_t
	10.2.9 pmix_server_unpublish_fn_t
	10.2.10 pmix_server_spawn_fn_t
	10.2.11 pmix_server_connect_fn_t
	10.2.12 pmix_server_disconnect_fn_t
	10.2.13 pmix_server_register_events_fn_t
	10.2.14 pmix_server_deregister_events_fn_t
	10.2.15 pmix_server_notify_event_fn_t
	10.2.16 pmix_server_listener_fn_t
	10.2.17 pmix_server_query_fn_t
	10.2.18 pmix_server_tool_connection_fn_t
	10.2.19 pmix_server_log_fn_t
	10.2.20 pmix_server_alloc_fn_t
	10.2.21 pmix_server_job_control_fn_t
	10.2.22 pmix_server_monitor_fn_t

	A Acknowledgements
	A.1 Version 2.0
	A.2 Version 1.0

	Bibliography
	Index

